题目地址:CF1091E New Year and the Acquaintance Estimation

首先,易知 \(ans\) 的奇偶性与所有给出的数的和的奇偶性相同

其次,易证 \(ans\) 的取值为一段连续的奇偶性相同的数,因此只需要到一个上界和下界(或者判断出无解输出 \(-1\) )

接下来的问题就是怎么判断一个状态合不合法以及如果不合法需要加还是减

题目中给出了一个Wiki的链接:Graph realization problem

链接中给出了问题的解法:Erdős–Gallai theorem

Erdős–Gallai定理的基本内容为:

一个非负整数序列 \(d_1≥d_2≥\cdots≥d_n\) 可以表示为 \(n\) 个顶点的简单图度序列,当且仅当 \(\sum_{i=1}^{n}\ d_i\) 为偶数且对每个 \(k\in [1,n]\) 满足

\[\sum_{i=1}^{k}\ d_i ≤ k(k-1)+\sum_{i=k+1}^{n}\ min(d_i,k)\]

对这个公式的理解 伪证 : \(1\) ~ \(k\) 这 \(k\) 个点的度数和最大为——所有点之间两两连线产生的度数和,加上剩下每个点可连线数量的最大值,这保证了公式的必要性;而非严格单调递减则保证了公式的充分性

利用公式朴素判断一次需要 \(O(n^2)\) ,但是可以优化到 \(O(n)\) ,外层嵌套两个二分,这样可以在 \(O(n\ log\ n)\) 的时间复杂度内解决问题

上代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 500006;
int n, a[N], c[N], cc[N], ansl = -1, ansr = -1;

int pd(int x) {
    memcpy(cc, c, sizeof(cc));
    ++cc[x];
    int w = 0, t = 0;
    ll s = 0, k = 0;
    for (int i = 0; i <= n; i++) {
        int num = (i == t && (t == n || a[t] < x)) ? x : a[t++];
        s += num;
        --cc[num];
        k += n - i - (w += cc[i]) - min(num, i);
        if (s > k + (ll)i * (i + 1)) return (i == t) ? 1 : -1;
    }
    return 0;
}

bool cmp(int x, int y) {
    return x > y;
}

int main() {
    cin >> n;
    ll s = 0;
    for (int i = 0; i < n; i++) {
        scanf("%d", &a[i]);
        s += a[i];
        ++c[a[i]];
    }
    s &= 1;
    sort(a, a + n, cmp);
    int l = 0, r = (n - s) >> 1;
    while (l <= r) {
        int mid = (l + r) >> 1;
        if (pd((mid << 1) + s) == -1) l = mid + 1;
        else {
            ansl = mid;
            r = mid - 1;
        }
    }
    l = ansl;
    r = (n - s) >> 1;
    while (l <= r) {
        int mid = (l + r) >> 1;
        if (pd((mid << 1) + s) == 1) r = mid - 1;
        else {
            ansr = mid;
            l = mid + 1;
        }
    }
    if (ansl == -1 || ansr == -1) puts("-1");
    else for (int i = ansl; i <= ansr; i++)
            printf("%lld ", (i << 1) + s);
    return 0;
}

另外线段树也可以优化,这样时间复杂度会多一个 \(log\) ,对 \(500000\) 的数据来说有些吃力,就不码了

CF1091E New Year and the Acquaintance Estimation的更多相关文章

  1. Codeforces 1091E New Year and the Acquaintance Estimation Erdős–Gallai定理

    题目链接:E - New Year and the Acquaintance Estimation 题解参考: Havel–Hakimi algorithm 和 Erdős–Gallai theore ...

  2. Codeforces 1091E New Year and the Acquaintance Estimation [图论]

    洛谷 Codeforces 思路 有一个定理:Erdős–Gallai定理. 然后观察样例,可以猜到答案必定是奇偶性相同的一段区间,那么二分左右端点即可. 定理和这个猜测暂时都懒得学/证,留坑. #i ...

  3. Good Bye 2018 (A~F, H)

    目录 Codeforces 1091 A.New Year and the Christmas Ornament B.New Year and the Treasure Geolocation C.N ...

  4. Codeforces 1091 Good Bye 2018

    占个坑先,希望不要掉的太惨了吧,不要掉到上一次之前的rating upt:flag竟然没到,开心. A - New Year and the Christmas Ornament 好像没什么可说的. ...

  5. Codeforces Good Bye 2018

    咕bye 2018,因为我这场又咕咕咕了 无谓地感慨一句:时间过得真快啊(有毒 A.New Year and the Christmas Ornament 分类讨论后等差数列求和 又在凑字数了 #in ...

  6. Good Bye 2018 Solution

    A. New Year and the Christmas Ornament 签到. #include <bits/stdc++.h> using namespace std; int a ...

  7. 萌新笔记——Cardinality Estimation算法学习(一)(了解基数计算的基本概念及回顾求字符串中不重复元素的个数的问题)

    最近在菜鸟教程上自学redis.看到Redis HyperLogLog的时候,对"基数"以及其它一些没接触过(或者是忘了)的东西产生了好奇. 于是就去搜了"HyperLo ...

  8. Noise Contrastive Estimation

    Notes from Notes on Noise Contrastive Estimation and Negative Sampling one sample: \[x_i \to [y_i^0, ...

  9. 手势估计- Hand Pose Estimation

    http://blog.csdn.net/myarrow/article/details/51933651 1. 目前进展 1.1 相关资料      1)HANDS CVPR 2016      2 ...

随机推荐

  1. SVN YUM安装

    一,安装: yum install subversion 二,创建配置SVN仓库: 目录自定,我这是在/home下: #cd /home # mkdir svn #svnadmin create /h ...

  2. Vue.js 条件与循环

    条件判断: v-if: 条件判断使用 v-if 指令: v-else-if:(其实和Java,c,js的语法差不多) v-show:

  3. jupyter notebook的安装与使用

    一.jupyter notebool介绍 Jupyter Notebook是Ipython的升级版,而Ipython可以说是一个加强版的交互式 Shell,也就是说,它比在terminal里运行pyt ...

  4. JAVA-Clone 对象拷贝

    JAVA 中对象的赋值是复制对象的引用,即复制引用 public static void main(String[] args) { User user = new User(1,"asds ...

  5. C++回顾day02---<拷贝构造函数:重点>

    一:补充---无参构造函数(默认无参构造函数)在实例化对象时注意点 (一)若没有写构造函数,则类会含有一个默认无参构造函数 (二)若自定义一个构造函数,则类不会提供默认构造函数 class A { p ...

  6. @JsonFormat的导包问题

    @DateTimeFormat(pattern = "yyyy-MM-dd hh:mm:ss")//注解可以以该格式注入格式@JsonFormat(locale="zh& ...

  7. oracle修改密码为永久不过期

    sqlplus /as sysdba ALTER PROFILE DEFAULT LIMIT PASSWORD_LIFE_TIME UNLIMITED;

  8. VM克隆后找不到eth0的问题解决

    问题描述 使用VM WorkStation新建虚拟机A,查看IP信息,显示结果: [root@centos65x64 ~]# ifconfig -a eth0 Link encap:Ethernet ...

  9. 用Google Brain的机器学习项目:Magenta,教神经网络学抖音小姐姐作曲。

    先上我们要学习的小姐姐 的美照.. 一.配置环境 1.自己配置环境:python,tensorflow,bazel(编译),java.然后下载magenta(https://github.com/te ...

  10. docker 系列 - 基础镜像环境和Docker常用命令整理

    =======================docker 基础镜像环境 alpine=======================可以使用 docker search 命令搜索指定的 image, ...