最长不下降子序列nlogn
b[i]表示长度为i的最长不下降子序列的最小末尾元素的值
显然它是单调递增的,满足二分性质,然后就可以愉快地二分啦.
这个做法是错误的!!!!!!!(划掉
这个方法是正确的,替换的时候虽然位置顺序换了,最终输出来的答案不对,但是是存在正确答案替换回去的,想出这个方法的人也是真的nb!
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<set>
#include<map>
#include<stack>
#include<cstring>
#define inf 2147483647
#define ls rt<<1
#define rs rt<<1|1
#define lson ls,nl,mid,l,r
#define rson rs,mid+1,nr,l,r
#define N 100010
#define For(i,a,b) for(int i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar() using namespace std;
int a[N],b[N],n,len;
void in(int &x){
int y=;
char c=g();x=;
while(c<''||c>''){
if(c=='-')y=-;
c=g();
}
while(c<=''&&c>=''){
x=(x<<)+(x<<)+c-'';c=g();
}
x*=y;
}
void o(int x){
if(x<){
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
}
int main(){
in(n);
For(i,,n)in(a[i]);
len=;
b[]=a[];
For(i,,n){
if(a[i]>=b[len])b[++len]=a[i];
else{
int x=upper_bound(b+, b+len+, a[i])-b;
b[x]=a[i];
}
// b[upper_bound(b+1, b+len+1, a[i])-b-1]=a[i];
}
o(len);
return ;
}
最长不下降子序列nlogn的更多相关文章
- 最长不下降子序列nlogn算法详解
今天花了很长时间终于弄懂了这个算法……毕竟找一个好的讲解真的太难了,所以励志我要自己写一个好的讲解QAQ 这篇文章是在懂了这个问题n^2解决方案的基础上学习. 解决的问题:给定一个序列,求最长不下降子 ...
- hdu1025 最长不下降子序列nlogn算法
C - DP Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32768KB 64bit I ...
- 最长不下降子序列 nlogn && 输出序列
最长不下降子序列实现: 利用序列的单调性. 对于任意一个单调序列,如 1 2 3 4 5(是单增的),若这时向序列尾部增添一个数 x,我们只会在意 x 和 5 的大小,若 x>5,增添成功,反之 ...
- tyvj 1049 最长不下降子序列 n^2/nlogn
P1049 最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 ...
- 最长不下降子序列的O(n^2)算法和O(nlogn)算法
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...
- 最长不下降子序列 O(nlogn) || 记忆化搜索
#include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...
- 最长不下降子序列 (O(nlogn)算法)
分析: 定义状态dp[i]表示长度为i的最长不下降子序列最大的那个数. 每次进来一个数直接找到dp数组第一个大于于它的数dp[x],并把dp[x - 1]修改成 那个数.就可以了 AC代码: # in ...
- P1020 导弹拦截(nlogn求最长不下降子序列)
题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...
- 最长不下降子序列(LIS)
最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...
随机推荐
- Oracle 数据库实例简介
回到顶部 一:Oracle 数据库实例简介 1:数据库实例的启动顺序: 使用数据库其实就是访问内存.即:数据库实例.数据库的启动是顺序是 先 nomount ----> mount --- ...
- centos7 nginx图片 服务器可以访问ftp用户上传的图片资源的配置
注:本文参考了csdn:JAVA_DIRECTION的<nginx和ftp搭建图片服务器>一文.在实践中其文在centos7中还是存在缺陷性的 一:前提条件:是成功的安装好了ftp服务器和 ...
- Confluence 6 配置推荐更新邮件通知默认的初始化设置
Confluence 为订阅者发送常规邮件报告,这个邮件报告中包含有用户具有查看权限的空间的最新的内容.这个被称为 推荐更新(Recommended Updates)通知. 如果你具有 Conflue ...
- anaconda利用pip安装module
开始_程序 中搜索:anaconda prompt (控制台) 输入pip 出现pip的一些信息,可以忽略 接着输入 pip install 模块名称 例如:pip install alphalens ...
- bzoj1977次小生成树(重要)
#include<cstdio> #include<iostream> #include<cstring> #include<queue> #inclu ...
- Nginx详解二十七:Nginx架构篇之安全篇
1.常见的恶意行为:爬虫行为和恶意抓取.资源盗用 解决方案: 基础防盗链功能:不让恶意用户能轻易爬去网站对外数据 secure_link_module模块:对数据安全性提高,加密验证和失效性,适合核心 ...
- 常见的User-Agent及免费代理IP网站
常见的User-Agent 1.Android Mozilla/5.0 (Linux; Android 4.1.1; Nexus 7 Build/JRO03D) AppleWebKit/535.19 ...
- ElasticSearch利用IK实现全文搜索
要做到中文全文检索还需要按照中文分词库 ,这里就使用 IK来设置 安装中文分词库 相关命令: whereis elasticsearch 找到目录 进入 到/usr/elasticsearch/bin ...
- linux操作系统中的netstat命令查看端口状态的使用和window操作系统查看端口号
1:linux操作系统 netstat 命令用于显示各种网络相关信息,即网络状态.而我主要使用netstat查看端口号是否启动: 参数详情: 1 -a (all)显示所有选项,默认不显示LISTEN相 ...
- spring+redis的集成,redis做缓存
1.前言 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.我们都知道,在日常的应用中,数据库瓶颈是最容易出现的 ...