I Curse Myself

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2266    Accepted Submission(s): 544

Problem Description
There is a connected undirected graph with weights on its edges. It is guaranteed that each edge appears in at most one simple cycle.

Assuming that the weight of a weighted spanning tree is the sum of weights on its edges, define V(k) as the weight of the k-th smallest weighted spanning tree of this graph, however, V(k) would be defined as zero if there did not exist k different weighted spanning trees.

Please calculate (∑k=1Kk⋅V(k))mod232.

 
Input
The input contains multiple test cases.

For each test case, the first line contains two positive integers n,m (2≤n≤1000,n−1≤m≤2n−3), the number of nodes and the number of edges of this graph.

Each of the next m lines contains three positive integers x,y,z (1≤x,y≤n,1≤z≤106), meaning an edge weighted z between node x and node y. There does not exist multi-edge or self-loop in this graph.

The last line contains a positive integer K (1≤K≤105).

 
Output
For each test case, output "Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
 
Sample Input
4 3
1 2 1
1 3 2
1 4 3
1
3 3
1 2 1
2 3 2
3 1 3
4
6 7
1 2 4
1 3 2
3 5 7
1 5 3
2 4 1
2 6 2
6 4 5
7
 
Sample Output
Case #1: 6
Case #2:26
Case #3: 493
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  6216 6215 6214 6213 6212 
 
题意:有一个n个结点,m条无向边的仙人掌图。求删除一些边形成生成树,求前k小生成树。
思路:因为是一个仙人掌图,所以每条边最多在一个简单环内。所以只需要删除每个简单环内的一条边就能形成生成树。
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<bitset>
using namespace std;
#define PI acos(-1.0)
#define eps 1e-8
typedef long long ll;
typedef pair<int,int> P;
const int N=1e3+,M=4e3+;
struct edge
{
int from,to;
int w;
int next;
};
int n,m,k;
edge es[M];
int cnt,head[N];
int dfs_clock=;
int pre[N],low[N];
stack<int>s;
void init(int n)
{
cnt=;
dfs_clock=;
for(int i=; i<=n+; i++) head[i]=-,pre[i]=;
}
void addedge(int u,int v,int w)
{
cnt++;
es[cnt].from=u,es[cnt].to=v;
es[cnt].w=w;
es[cnt].next=head[u];
head[u]=cnt;
}
int tmp[],ans[];
struct node
{
int num;
int id;
bool operator <(const node x) const
{
return x.num>num;
}
};
void unit(priority_queue<node> &q)
{
tmp[]=;
while(tmp[]<k&&!q.empty())
{
node x=q.top();
q.pop();
tmp[++tmp[]]=x.num;
if(++x.id<=ans[]) q.push((node)
{
x.num-ans[x.id-]+ans[x.id],x.id
});
}
ans[]=;
for(int i=; i<=tmp[]; i++) ans[++ans[]]=tmp[i];
}
bool dfs(int u,int fa)
{
pre[u]=low[u]=++dfs_clock;
for(int i=head[u]; i!=-; i=es[i].next)
{
int v=es[i].to;
if(v==fa) continue;
if(!pre[v])
{
s.push(i);
dfs(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=pre[u])
{
priority_queue<node>q;
while(!s.empty())
{
int poi=s.top();
s.pop();
q.push((node){ans[]+es[poi].w,});
if(poi==i) break;
}
if(q.size()>) unit(q);
}
}
else if(pre[v]<pre[u]&&v!=fa)
{
s.push(i);
low[u]=min(low[u],pre[v]);
}
}
}
int main()
{
int Case=;
while(scanf("%d%d",&n,&m)!=EOF)
{
init(n);
int all=;
for(int i=; i<=m; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
all+=w;
addedge(u,v,w),addedge(v,u,w);
}
scanf("%d",&k);
ans[]=,ans[++ans[]]=;
dfs(,);
ll sum=,mod=(1LL<<);
for(int i=; i<=ans[]; i++)
sum=(sum+(1LL*(all-ans[i])*i)%mod)%mod;
printf("Case #%d: %lld\n",++Case,sum);
}
return ;
}

无向仙人掌图

HDU 6041.I Curse Myself 无向仙人掌图的更多相关文章

  1. HDU 6041 - I Curse Myself | 2017 Multi-University Training Contest 1

    和题解大致相同的思路 /* HDU 6041 - I Curse Myself [ 图论,找环,最大k和 ] | 2017 Multi-University Training Contest 1 题意 ...

  2. HDU 6041 I Curse Myself ——(仙人掌图,tarjan,转化)

    题解见这个博客:http://blog.csdn.net/ME495/article/details/76165039. 复杂度不太会算..这个经典问题的解法需要注意,维护队列里面只有k个元素即可.另 ...

  3. HDU 6041 I Curse Myself(二分+搜索)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6041 [题目大意] 给出一个仙人掌图,求第k小生成树 [题解] 首先找到仙人掌图上的环,现在的问题 ...

  4. HDU 6041 I Curse Myself(点双联通加集合合并求前K大) 2017多校第一场

    题意: 给出一个仙人掌图,然后求他的前K小生成树. 思路: 先给出官方题解 由于图是一个仙人掌,所以显然对于图上的每一个环都需要从环上取出一条边删掉.所以问题就变为有 M 个集合,每个集合里面都有一堆 ...

  5. hdu 6041 I Curse Myself

    题目: 点这里OvO http://acm.hdu.edu.cn/showproblem.php?pid=6041 2017 Multi-University Training Contest - T ...

  6. hdu 6041 I Curse Myself 无向图找环+优先队列

    I Curse Myself Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  7. HDU 3594.Cactus 仙人掌图

    Cactus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  8. hdu 3594 Cactus /uva 10510 仙人掌图判定

    仙人掌图(有向):同时满足:1强连通:2任何边不在俩个环中. 个人理解:其实就是环之间相连,两两只有一个公共点,(其实可以缩块),那个公共点是割点.HDU数据弱,网上很多错误代码和解法也可以过. 个人 ...

  9. HDU 3594 Cactus (强连通+仙人掌图)

    <题目链接> <转载于 >>> > 题目大意: 给你一个图,让你判断他是不是仙人掌图. 仙人掌图的条件是: 1.是强连通图. 2.每条边在仙人掌图中只属于一个 ...

随机推荐

  1. 【python】django上传文件

    参考:https://blog.csdn.net/zahuopuboss/article/details/54891917 参考:https://blog.csdn.net/zzg_550413470 ...

  2. HTTPS 基本流程 转载 https://zhuanlan.zhihu.com/p/27395037

    协议 1.HTTP 协议(HyperText Transfer Protocol,超文本传输协议):是客户端浏览器或其他程序与Web服务器之间的应用层通信协议 . 2.HTTPS 协议(HyperTe ...

  3. Python科学计算结果的存储与读取

    Python科学计算结果的存储与读取 总结于2019年3月17日  荆楚理工学院 计算机工程学院 一.前言 显然,作为一名工科僧,执行科学计算,需用Python.PS:快忘记Matlab吧.我用了二十 ...

  4. 前端生成excel

    一:安装依赖 1:在package.json 中加入四个依赖包 (1): "json2csv": "^3.11.0", (2):"file-saver ...

  5. java面试题复习(八)

    71.如何通过反射创建对象? 方法1:通过类对象调用newInstance()方法,例如:String.class.newInstance()  方法2:通过类对象的getConstructor()或 ...

  6. python web编程之网络基础

    1.TCP/IP协议 1)分层 应用层,传输层,网络层,接口层 2)Ip地址 3)域名 4)URL统一资源定位符 格式:    [协议]://[主机]:[端口]/[路径]?[参数] 协议是HTTP,F ...

  7. R语言输出高质量图片

    Rstudio画图之后保存的 图片格式如下 上面的几种格式可以直接插入word文档中,但是图片质量很低,锯齿感很明显.若生成PDF,为矢量图(不懂),但是不可以插入word文档中. 最简便的方法就是对 ...

  8. Appium基础知识与环境搭建

    基础知识:  环境搭建: 1.安装jdk,配置java环境变量 (1)新建变量"JAVA_HOME",变量值"D:\Frameworks\Java\jdk1.8.0_18 ...

  9. 转: Ext.data.Store 修改Post请求

    Extjs 4.0版本 var Store = Ext.create('Ext.data.Store', { pageSize: pageSize, model: 'Ext.data.Model名称' ...

  10. [Design] 后端程序的高并发与异步

    既然涉及到高并发这个概念,就少不了先谈这么几个概念,并发数.多进程.多线程.协程.负载均衡. 操作系统上讲的并发是操作系统上有几个程序在同时执行,单核CPU在微观上是由CPU调度执行,非同时执行,多核 ...