In general differential calculus, we have learned the definitions of function continuity, such as functions of class \(C^0\) and \(C^2\). For most cases, we only take them for granted as for example, we have memorized the formulations of Green identities while ignored the conditions on function's continuities. Although this is helpful for a "vivid" and "naive" understanding, mathematical rigorousness and structural beauties are lost. Therefore, this article summarizes several definitions of function continuities and clarifies their imbedding relationships.

Definition (Continuous function space \(C^m(\Omega)\) with order \(m\)) For non-negative integer \(m\), \(C^m(\Omega)\) is the vector space consisting of all functions \(\phi\) with their partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) continuous on an open set \(\Omega\).

Because the domain \(\Omega\) is open, functions in \(C^m(\Omega)\) may not be bounded, which seldom appear in engineering cases. Therefore, the spaces of bounded continuous functions \(C_B^m(\Omega)\) are introduced as below, which are subspaces of \(C^m(\Omega)\).

Definition (Bounded continuous function spaces \(C_B^m(\Omega)\)) \(C_B^m(\Omega)\) is a subspace of \(C^m(\Omega)\) and for all \(\phi \in C_B^m(\Omega)\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are bounded on \(\Omega\). \(C_B^m(\Omega)\) is a Banach space with the norm defined as $$ \norm{\phi; C_B^m(\Omega)} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$

Because the domain \(\Omega\) is open in \(\mathbb{R}^n\), we have the intention to continuously extend the function to domain boundary \(\pdiff\Omega\) (note: This is very important because it determines for example whether our solution to a PDE can be extended continuously to match the given boundary condition). Then comes the definition of bounded and uniformly continuous function spaces \(C^{m}(\overline{\Omega})\).

Definition (Spaces of bounded and uniformly continuous functions \(C^{m}(\overline{\Omega})\)) \(C^{m}(\overline{\Omega})\) is a subspace of \(C_B^{m}(\Omega)\) and for all \(\phi \in C^{m}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are uniformly continuous on \(\Omega\). \(C^{m}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^m(\overline{\Omega})} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$

Remark

  1. A bounded and uniformly continuous function has a unique, bounded and continuous extension to \(\overline{\Omega}\).
  2. Uniform continuity can be understood as: a change in the function value anywhere in the function's range can control the change of independent variable uniformly, i.e. there is a global common bound on it. At the first glance, we tend to say that if a function is uniformly continuous, it is also bounded. However, this is not always true and we leave this question to future post.

Finally, we have the definition of Hölder and Lipschitz continuous function spaces.

Definition (Spaces of Hölder continuous functions \(C^{m,\lambda}(\overline{\Omega})\)) \(C^{m,\lambda}(\overline{\Omega})\) is a subspace of \(C^{m}(\overline{\Omega})\) and for all \(\phi \in C^{m,\lambda}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) satisfies a Hölder condition of exponent \(\lambda \in (0, 1]\), i.e. there exists a constant \(K\) such that

$$ \abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)} \leq K\abs{x - y}^{\lambda} \quad (x, y \in \Omega) $$

When the Hölder exponent \(\lambda\) is 1, functions in the space \(C^{m,1}(\overline{\Omega})\) are Lipschitz continuous. \(C^{m,\lambda}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^{m,\lambda}(\overline{\Omega})} = \abs{\phi; C^m(\overline{\Omega})} + \max_{0 \leq \abs{\alpha} \leq m} \sup_{\overset{x, y \in \Omega}{x \neq y}} \frac{\abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)}}{\abs{x - y}^{\lambda}} $$

Next, we'll show the imbedding chain of the above continuous function spaces.

Definition (Imbeddings) Let \(X\) and \(Y\) be normed spaces. \(X\) is imbedded in \(Y\), written as \(X \rightarrow Y\), if \(X\) is a vector subspace of \(Y\) and the identity operator \(I: X \longrightarrow Y\) is continuous for all \(x \in X\).

Remark The continuous identity operator implies that the norm of \(x \in X\) can be used to control the norm of \(y = I(x) \in Y\) with a constant \(M\),

$$ \norm{y; Y} \leq M \norm{x; X} \quad (\forall x \in X) $$

With the above defined norms for various continuous function spaces, the whole chain of imbeddings is summarized as follows when \(\Omega\) is convex:

\begin{align*} & C^{\infty} (\overline{\Omega}) \rightarrow \cdots C^{m+1}(\overline{\Omega}) \rightarrow C^{m,1}(\overline{\Omega}) \rightarrow C^{m,\lambda}(\overline\Omega) \\ & \rightarrow C^{m, v}(\overline\Omega) \rightarrow C^{m}(\overline\Omega) \rightarrow \cdots C^0(\overline{\Omega}) \end{align*}

where \(0 < v < \lambda < 1\).

Summary of continuous function spaces的更多相关文章

  1. Concept of function continuity in topology

    Understanding of continuity definition in topology When we learn calculus in university as freshmen, ...

  2. Constructing continuous functions

    This post summarises different ways of constructing continuous functions, which are introduced in Se ...

  3. 神经网络可以拟合任意函数的视觉证明A visual proof that neural nets can compute any function

    One of the most striking facts about neural networks is that they can compute any function at all. T ...

  4. (zhuan) Deep Deterministic Policy Gradients in TensorFlow

          Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...

  5. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  6. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  7. MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  8. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

  9. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

随机推荐

  1. linux快速将磁盘额外空间扩展到某一挂载点

    由于之前在创建用户时,为该用户目录分配的空间只有5G,在后续的开发,存放的东西越来越多,空间眼看就不够用了,网上查了一下,很多都是教我们将其余挂载点分配过多的空间分配到空间不足的挂载点,步骤还不算太复 ...

  2. NOIP模拟赛10 题解

    t3: 题意 给你一棵树,然后每次两种操作:1.给一个节点染色 : 2. 查询一个节点与任意已染色节点 lca 的权值的最大值 分析 考虑一个节点被染色后的影响:令它的所有祖先节点(包括自身)的所有除 ...

  3. Spring HibernateTemplate与HibernateDaoSupport对比

    HibernateTemplate与HibernateDaoSupport两者都是spring整合hibernate提供的模板技术. 对于保存一个对象,HibernateTemplate需要先配置 配 ...

  4. 文件缓存tmpfs简单使用

    文件缓存tmpfs基于内存的文件系统,直接使用ram(物理内存)+swap(交换分区) tmpfs缓存文件系统/dev/shm共享内存动态的使用虚拟内存,文件删除后释放内存 特性:1.动态空间使用和动 ...

  5. mysql5.7 pxc

    pxc优点总结:可以达到时时同步,无延迟现象发生完全兼容MySQL对于集群中新节点的加入,维护起来很简单数据的强一致性不足之处总结:只支持Innodb存储引擎存在多节点update更新问题,也就是写放 ...

  6. ASP.NET MVC5高级编程 之 视图

    1.1理解视图约定 当创建一个项目模版时,可以注意到,项目以一种非常具体的方式包含了一个结构化的Views目录.在每一个控制器的View文件夹中,每一个操作方法都有一个同名的视图文件与其对应.这就提供 ...

  7. pyhon 前面补充和set

    一, 主要内容. 补充一个字符串的基本操作 li = ["李嘉诚", "麻花藤", "黄海峰", "刘嘉玲"] s = ...

  8. SoapUI、Jmeter、Postman三种接口测试工具的比较分析

    前段时间忙于接口测试,也看了几款接口测试工具,简单从几个角度做了个比较,拿出来与诸位分享一下吧.各位如果要转载,请一定注明来源,最好在评论中告知博主一声,感谢.本报告从多个方面对接口测试的三款常用工具 ...

  9. SQLPLUS 命令

    定制:sql提示符信息 1.显示SQLPLUS帮助,命令如下:HELP INDEX @ COPY PAUSE SHUTDOWN @@ DEFINE PRINT SPOOL / DEL PROMPT S ...

  10. Mybatis调用PostgreSQL存储过程实现数组入参传递

    注:本文来源于 < Mybatis调用PostgreSQL存储过程实现数组入参传递  > 前言 项目中用到了Mybatis调用PostgreSQL存储过程(自定义函数)相关操作,由于Pos ...