两方面(发散,相关)~三方法(FWE)

F:方皮卡互

W:RFE

E:惩罚树

一、简介

 我们的数据处理后,喂给算法之前,考虑到特征的实际情况,通常会从两个方面考虑来选择特征:

 1)特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用

 2)特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优先选择

 根据特征选择的形式又可以将特征选择方法分为3种:

  • Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值选择特征
  • Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征
  • Embedded:集成法,先使用某些模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣

二、实践

 1)Filter

  a)方差法

   使用方差法,要先计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。

   使用feature_selection库的VarianceThreshold类来选择特征的代码如下: 

from sklearn.datasets import load_iris
from sklearn.feature_selection import VarianceThreshold iris = load_iris()
print(iris.data[0])
print(iris.target[0])

   一个样本的数据和标签,如下:

   而我们将方差阈值设置为3之后,保留方差大于3的特征:

print(VarianceThreshold(threshold=3).fit_transform(iris.data)[0])

   结果:

   可见只有第三个特征满足方差大于3,被保留,注意:方差选择法,返回值为特征选择后的数据

  b)皮尔逊系数

   皮尔逊系数只能衡量线性相关性,先要计算各个特征对目标值的相关系数以及相关系数的P值。

   用feature_selection库的SelectKBest类结合皮尔逊系数来选择特征的代码如下:

from sklearn.feature_selection import SelectKBest
from scipy.stats import pearsonr
from sklearn.datasets import load_iris
import numpy as np iris = load_iris() #选择K个最好的特征,返回选择特征后的数据 #第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量
#输出二元组(评分,P值)的数组
#数组第i项为第i个特征的评分和P值。在此定义为计算相关系数
#参数k为选择的特征个数
def multivariate_pearsonr(X, y):
scores, pvalues = [], []
for ret in map(lambda x: pearsonr(x, y), X.T):
print(ret)
scores.append( abs(ret[0]) )
pvalues.append( ret[1] ) return (np.array(scores), np.array(pvalues)) transformer = SelectKBest( score_func = multivariate_pearsonr, k=2)
Xt_pearson = transformer.fit_transform( iris.data, iris.target)
print(Xt_pearson)

  

    

   Pearson相关系数的一个明显缺陷是,作为特征排序机制,他只对线性关系敏感。如果关系是非线性的,即便两个变量具有一一对应的关系,Pearson相关性也可能会接近0

from scipy.stats import pearsonr
import numpy as np
x = np.random.uniform(-1, 1, 10000)
print( pearsonr(x, x**2) )
print( pearsonr(x, x**2)[0] )

  

  c)卡方检验

   在统计学中,卡方检验用来评价是两个事件是否独立,也就是$P(AB) = P(A)*P(B)$

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2 from sklearn.datasets import load_iris
iris = load_iris() SelectKBest(chi2, k=2).fit_transform(iris.data, iris.target)

  d)互信息

   互信息是用来评价一个事件的出现对于另一个事件的出现所贡献的信息量

   这里有通俗的理解(抛开公式):

    原来我对X有些不确定(不确定性为H(X)),告诉我Y后我对X不确定性变为H(X|Y),这个不确定性的减少量就是X,Y之间的互信息I(X;Y)=H(X)-H(X|Y)。

    互信息指的是两个随机变量之间的关联程度:即给定一个随机变量后,另一个随机变量不确定性的削弱程度,因而互信息取值最小为0,意味着给定一个随机变量对确定一另一个随机变量没有关系,最大取值为随机变量的熵,意味着给定一个随机变量,能完全消除另一个随机变量的不确定性

from sklearn.feature_selection import mutual_info_classif

from sklearn.datasets import load_iris
iris = load_iris() SelectKBest(mutual_info_classif, k=2).fit_transform(iris.data, iris.target)

   反过头来看\(y=x^2\)这个例子,MIC算出来的互信息值为1(最大的取值)

from minepy import MINE
m = MINE()
x = np.random.uniform(-1, 1, 100000)
m.compute_score(x, x**2)
print ( m.mic() )

  

 2)Wrapper

  a)递归特征消除法(Recursive Feature Elimination)

   递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。

   使用feature_selection库的RFE类来选择特征的代码如下:

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris iris = load_iris()
RFE(estimator=LogisticRegression(), n_features_to_select=2).fit_transform(iris.data, iris.target)

 3)Embedded:集成法,先使用某些模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣

  a)基于树模型的特征选择法

   树模型中GBDT也可用来作为基模型进行特征选择,使用feature_selection库的SelectFromModel类结合GBDT模型,来选择特征的代码如下:

from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_iris iris = load_iris() SelectFromModel(GradientBoostingClassifier()).fit_transform(iris.data, iris.target)

  b)基于惩罚项的特征选择法

   使用带惩罚项的基模型,除了筛选出特征外,同时也进行了降维

三、总结

Feature Selection的更多相关文章

  1. 【转】[特征选择] An Introduction to Feature Selection 翻译

    中文原文链接:http://www.cnblogs.com/AHappyCat/p/5318042.html 英文原文链接: An Introduction to Feature Selection ...

  2. 单因素特征选择--Univariate Feature Selection

    An example showing univariate feature selection. Noisy (non informative) features are added to the i ...

  3. 10-3[RF] feature selection

    main idea: 计算每一个feature的重要性,选取重要性前k的feature: 衡量一个feature重要的方式:如果一个feature重要,则在这个feature上加上noise,会对最后 ...

  4. Feature Selection Can Reduce Overfitting And RF Show Feature Importance

    一.特征选择可以减少过拟合代码实例 该实例来自机器学习实战第四章 #coding=utf-8 ''' We use KNN to show that feature selection maybe r ...

  5. highly variable gene | 高变异基因的选择 | feature selection | 特征选择

    在做单细胞的时候,有很多基因属于noise,就是变化没有规律,或者无显著变化的基因.在后续分析之前,我们需要把它们去掉. 以下是一种找出highly variable gene的方法: The fea ...

  6. 机器学习-特征选择 Feature Selection 研究报告

    原文:http://www.cnblogs.com/xbinworld/archive/2012/11/27/2791504.html 机器学习-特征选择 Feature Selection 研究报告 ...

  7. the steps that may be taken to solve a feature selection problem:特征选择的步骤

    參考:JMLR的paper<an introduction to variable and feature selection> we summarize the steps that m ...

  8. The Practical Importance of Feature Selection(变量筛选重要性)

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  9. [Feature] Feature selection

    Ref: 1.13. Feature selection Ref: 1.13. 特征选择(Feature selection) 大纲列表 3.1 Filter 3.1.1 方差选择法 3.1.2 相关 ...

  10. [Feature] Feature selection - Embedded topic

    基于惩罚项的特征选择法 一.直接对特征筛选 Ref: 1.13.4. 使用SelectFromModel选择特征(Feature selection using SelectFromModel) 通过 ...

随机推荐

  1. 【Python】一份非常好的Matplotlib教程

    Matplotlib 教程 本文为译文,原文载于此,译文原载于此.本文欢迎转载,但请保留本段文字,尊重作者和译者的权益.谢谢.: ) 介绍 Matplotlib 可能是 Python 2D-绘图领域使 ...

  2. 数据结构与算法(Python)

    一.数据结构与算法概述 数据结构与算法的定义 我们把现实中大量而且非常复杂的问题以特定的数据类型(个体)和特定的存储结构(个体的关系)保存到相应的主存储器(内存)中,以及在此基础上为实现某个功能而执行 ...

  3. 初次尝试使用jenkins+python+appium构建自动化测试

    初次尝试使用jenkins+python+appium构建自动化测试 因为刚刚尝试使用jenkins+python+appium尝试,只是一个Demo需要很多完善,先记录一下今天的成果,再接再厉 第一 ...

  4. 【XSY2745】装饰地板 状压DP 特征多项式

    题目大意 你有\(s_1\)种\(1\times 2\)的地砖,\(s_2\)种\(2\times 1\)的地砖. 记铺满\(m\times n\)的地板的方案数为\(f(m,n)\). 给你\(m, ...

  5. 【XSY2715】回文串 树链剖分 回文自动机

    题目描述 有一个字符串\(s\),长度为\(n\).有\(m\)个操作: \(addl ~c\):在\(s\)左边加上一个字符\(c\) \(addr~c\):在\(s\)右边加上一个字符 \(tra ...

  6. mysql索引技巧

    索引 索引是对数据表一列或多列的值进行排序的一种结构,用于加速基于索引字段的数据排序以及优化查询的执行速度,避免全表扫描.索引是直接影响数据库性能的数据库模式对象,因此十分重要.在定义主键和唯一键约束 ...

  7. MT【308】投影的定义

    已知向量$\overrightarrow{a},\overrightarrow{b}$满足:$|\overrightarrow{a}|=2$,向量$\overrightarrow{b}$与$\over ...

  8. ElasticSearch5.4.1 搜索引擎搭建文档

    安装配置JDK环境JDK安装(不能安装JRE)JDK下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-download ...

  9. Netty如何实现Reactor模式

    在前面的文章中(Reactor模型详解),我们讲解了Reactor模式的各种演变形式,本文主要讲解的则是Netty是如何实现Reactor模式的.这里关于Netty实现的Reactor模式,需要说明的 ...

  10. 自学Python3.6-算法 二分查找算法

    自学Python之路-Python基础+模块+面向对象自学Python之路-Python网络编程自学Python之路-Python并发编程+数据库+前端自学Python之路-django 自学Pyth ...