给出3个正整数A B C,求A^B Mod C。

例如,3 5 8,3^5 Mod 8 = 3。

Input

3个正整数A B C,中间用空格分隔。(1 <= A,B,C <= 10^9)

Output

输出计算结果

Input示例

3 5 8

Output示例

3

用到了快速幂 ,挑战P123

比如x ^22 = x ^16 *x ^4*x ^2;

22 转换成二进制是10110;

#include <iostream>
using namespace std;
typedef long long ll; ll pow_mod(ll x,ll n,ll mod)
{
ll res = ;
while ( n > )
{
if(n & ) res = res * x % mod;
x = x * x % mod;
n >>= ;
//cout<< n << endl;
}
return res;
} int main()
{
int x,n,mod;
cin >> x >> n >> mod;
cout<<pow_mod(x,n,mod)<<endl;
return ;
}

利用位进制

下面是递归版本

如果n为 偶数  那么 x^n = (x^2) ^ (n/2)    n为奇数   无非多乘一个n

#include <iostream>
using namespace std;
typedef long long ll; ll pow_mod1(ll x,ll n,ll mod)
{
ll res = ;
if(n == ) return ;
res = pow_mod1(x * x % mod, n/,mod);
if(n % )
res = res * x % mod;
return res;
} int main()
{
int x,n,mod;
cin >> x >> n >> mod;
cout<<pow_mod1(x,n,mod)<<endl;
return ;
}

递归版

51NOD 1046 A^B Mod C的更多相关文章

  1. 51Nod 1046 A^B Mod C(日常复习快速幂)

    1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = ...

  2. 51Nod 1046 A^B Mod C Label:快速幂

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  3. 计算幂 51Nod 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  4. (快速幂)51NOD 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  5. 1046 A^B Mod C

    1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整 ...

  6. 51 nod 1046 A^B Mod C

    1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^ ...

  7. A^B Mod C (51Nod - 1046 )(快速幂)

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  8. 51nod 1421:最大MOD值

    1421 最大MOD值 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个a数组,里面有n个整数.现在要从中找到两个数字(可以 ...

  9. 51Nod - 1046 (附关于快速幂的讨论)

    题意: 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. 分析: 快速幂模板题. 快速幂: 1.自然数的拆分 对于任何的自然数, 可以把它用形如1001 ...

随机推荐

  1. 使用浏览器,调试js代码

    1:创建html网页和js文件 <!doctype html> <html> <head> <meta charset="utf-8"&g ...

  2. word使用

    1:插入图片,显示不完整,需要>点击上方的段落,选择单倍行距 2:wps  可以直接右键选择保存文件中的图片 3:word中换行符的标识符为^p ,可以用来替换换行符. 4:使word中某一段背 ...

  3. Spark性能优化(一)

    前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...

  4. SSM请求的响应

    1.请求响应文本到页面直接用pw.println("文本信息");打印到页面: 2.如果请求方法前不加@ResponseBody,返回字符串直接转发到对应的页面: 3.如果请求方法 ...

  5. react-native 0.57 run-ios 失败解决办法

    React Native 日常报错 'config.h' file not found     版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_ ...

  6. POJ 3461 Oulipo(KMP,模式串在主串中出现次数 可重叠)

    题意:给你两个字符串p和s,求出p在s中出现的次数. 显然,我们要先把模式串放到前面,之后主串放后面,中间隔开,这样就可以根据前缀数组的性质来求了. 我先想直接把p接到s前面,之后求Next数组对st ...

  7. 7zip

    1.下载地址. https://www.7-zip.org/ 2.傻瓜式安装.

  8. SV中的数据类型

    Verilog-1995中规定的数据类型有:变量(reg), 线网(wire), 32位有符号数(integer), 64位无符号数(time), 浮点数(real). SV扩展了reg类型为logi ...

  9. X-UA-Compatible

    X-UA-Compatible是神马? X-UA-Compatible是IE8的一个专有<meta>属性,它告诉IE8采用何种IE版本去渲染网页,在html的<head>标签中 ...

  10. Azkaban学习笔记(二)

    官方文档:http://azkaban.github.io/ 一.Azkaban主要的组成: 1. 关系型数据库——MySQL 2. AzkabanWebServer 3. AzkabanExcuto ...