装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次。公式比较好推。f[n] = f[n-1]*f[n-2]。然后a和b系数都是呈斐波那契规律增长的。需要先保存下来指数。但是太大了。在这里不能用小费马定理。要用降幂公式取模、
(A^x)%C=A^(x%phi(C)+phi(C))%C(x>=phi(C)) Phi[C]表示不大于C的数中与C互质的数的个数,可以用欧拉函数来求。

矩阵快速幂也不熟、。觉得很难。

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define N 1000005 int visit[N],prime[N],K;
long long P,Phi; struct matrix
{
long long A[][];
}; void intt() // 找出1000000以内的素数
{
int i,j;
memset(visit,,sizeof(visit));
for(i=; i<=; i++)
{
if(visit[i]==)
{
for(j=i+i; j<=; j+=i)
{
visit[j]=;
}
}
}
K=;
for(j=; j<=; j++)
if(visit[j]==) prime[++K]=j;
} matrix power(matrix ans1,matrix ans2) // 矩阵乘法
{
int i,j,k;
matrix ans;
for(i=; i<=; i++)
{
for(j=; j<=; j++)
{
ans.A[i][j]=;
for(k=; k<=; k++)
{
ans.A[i][j]+=ans1.A[i][k]*ans2.A[k][j];
if(ans.A[i][j]>Phi)
{
ans.A[i][j]=ans.A[i][j]%Phi+Phi;
}
}
}
}
return ans;
} matrix mod(matrix un, long long k) // 求矩阵的k次幂
{
matrix ans;
ans.A[][]=;
ans.A[][]=;
ans.A[][]=;
ans.A[][]=;
while(k)
{
if(k%) ans=power(ans,un);
un=power(un,un);
k/=;
}
return ans;
} long long mod1(long long a, long long k) //求(a^k)%p
{
long long ans;
ans=;
while(k)
{
if(k%)
{
ans=ans*a;
ans%=P;
}
a=a*a;
a%=P;
k/=;
}
return ans%P;
} int main()
{
int i,ncase,t;
long long a,b,aa,bb,n,num,num1,num2;
matrix init,ans; intt();
scanf("%d",&ncase); for(t=; t<=ncase; t++)
{
scanf("%I64d%I64d%I64d%I64d",&a,&b,&P,&n);
printf("Case #%d: ",t);
if(n==)
{
printf("%I64d\n",a%P);
continue;
}
else if(n==)
{
printf("%I64d\n",b%P);
continue;
}
else if(n==)
{
printf("%I64d\n",a*b%P);
continue;
}
if(P==)
{
printf("0\n");
continue;
} // 初始化求斐波那契数的初始矩阵
init.A[][]=;
init.A[][]=;
init.A[][]=;
init.A[][]=;
// A^B % C = A ^ ( B % phi[C] + phi[C] ) %C ( B >= phi[C] ) ,phi[C]表示与C互质的数的个数
Phi=;
num=P; for(i=; i<=K; i++)
{
if(prime[i]>P) break;
if(P%prime[i]==)
{
Phi*=(prime[i]-);
num/=prime[i];
}
}
//phi[C]=C*(1-1/p1)*(1-1/p2)*...*(1-1/pt);p1,p2,...pt表示C的素因子
Phi*=num;//Phi表示phi[C] 在这里c = p ans=mod(init,n-);//求指数
num1=ans.A[][];//a的指数
num2=ans.A[][]+ans.A[][];//b的指数 求b的指数不是已经溢出了吗。???
if(num2>Phi) num2=num2%Phi+Phi; aa=mod1(a,num1);//a^num1%p;
bb=mod1(b,num2);//b^num2%p; printf("%I64d\n",aa*bb%P);
}
return ;
}

HDU 3221 矩阵快速幂+欧拉函数+降幂公式降幂的更多相关文章

  1. hdu 5895(矩阵快速幂+欧拉函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5895 f(n)=f(n-2)+2*f(n-1) f(n)*f(n-1)=f(n-2)*f(n-1)+2 ...

  2. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  3. [bzoj 1409] Password 矩阵快速幂+欧拉函数

    考试的时候想到了矩阵快速幂+快速幂,但是忘(bu)了(hui)欧拉定理. 然后gg了35分. 题目显而易见,让求一个数的幂,幂是斐波那契数列里的一项,考虑到斐波那契也很大,所以我们就需要欧拉定理了 p ...

  4. HDU 4549 矩阵快速幂+快速幂+欧拉函数

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  5. Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)

    传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发 ...

  6. hdu4549 矩阵快速幂 + 欧拉降幂

    R - M斐波那契数列 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit  ...

  7. Super A^B mod C (快速幂+欧拉函数+欧拉定理)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=1759 题目:Problem Description Given A,B,C, You should quick ...

  8. hdu 2814 快速求欧拉函数

    /** 大意: 求[a,b] 之间 phi(a) + phi(a+1)...+ phi(b): 思路: 快速求欧拉函数 **/ #include <iostream> #include & ...

  9. hdu 2824 The Euler function(欧拉函数)

    题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质 ...

随机推荐

  1. android 实践项目 总结 (修改)

    Android手机定位与地图实现 在一个不熟悉的环境中,获得自己的位置,选择合适的就餐地点,住宿和公交路线成为一项难题.本次的实践项目就是为了解决上述难题的,通过调用百度地图的接口实现定位.查询公交路 ...

  2. Android Studio导入包

    1.复制jar包,打开工程,以project形式打开,在libs下面粘贴: 2.右键jar包,add as library.

  3. Python3基础 os listdir curdir 查看当前工作目录的所有文件的名字

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  4. POJ 2785 4 Values whose Sum is 0 (二分)题解

    思路: 如果用朴素的方法算O(n^4)超时,这里用折半二分.把数组分成两块,分别计算前后两个的和,然后枚举第一个再二分查找第二个中是否有满足和为0的数. 注意和有重复 #include<iost ...

  5. The way to Go(2): 语言的主要特性与发展的环境和影响因素

    Reference: Github: Go Github: The way to Go 语言的主要特性与发展的环境和影响因素 现有编程语言对于Go语言发展的影响: Why Go? C/C++ 的发展速 ...

  6. NYOJ 16 矩形嵌套(经典DP)

    http://acm.nyist.net/JudgeOnline/problem.php?pid=16 矩形嵌套 时间限制:3000 ms  |           内存限制:65535 KB 难度: ...

  7. 告诉你什么是javascript的回调函数

    函数也是对象 想弄明白回调函数,首先的清楚地明白函数的规则.在javascript中,函数是比较奇怪的,但它确确实实是对象.确切地说,函数是用Function()构造函数创建的Function对象.F ...

  8. 【bzoj】3224: Tyvj 1728 普通平衡树

    3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 10097  Solved: 4302[Submit][St ...

  9. django 数据库同步

    python manage.py makemigrations python manage.py migrate

  10. shell 求幂

    $ let i=** $ echo $i $ ((i=**)) $ echo $i $ echo "5^2" | bc