Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

* Dynamic Programming
* Definitaion
* m[i][j] is minimal distance from word1[0..i] to word2[0..j]
* So,
* 1) if word1[i] == word2[j], then m[i][j] == m[i-1][j-1].
* 2) if word1[i] != word2[j], then we need to find which one below is minimal:
* min( m[i-1][j-1], m[i-1][j], m[i][j-1] ) and +1 - current char need be changed.
* Let's take a look m[1][2] : "a" => "ab"
* +---+ +---+
* ''=> a | 1 | | 2 | '' => ab
* +---+ +---+
* +---+ +---+
* a => a | 0 | | 1 | a => ab
* +---+ +---+
*
* To know the minimal distance `a => ab`, we can get it from one of the following cases:
* 1) delete the last char in word1, minDistance( '' => ab ) + 1
* 2) delete the last char in word2, minDistance( a => a ) + 1
* 3) change the last char, minDistance( '' => a ) + 1

* For Example:
* word1="abb", word2="abccb"
* 1) Initialize the DP matrix as below:
* "" a b c c b
* "" 0 1 2 3 4 5
* a 1
* b 2
* b 3
* 2) Dynamic Programming
* "" a b c c b
* "" 0 1 2 3 4 5
* a 1 0 1 2 3 4
* b 2 1 0 1 2 3
* b 3 2 1 1 1 2

int min(int x, int y, int z) {
return std::min(x, std::min(y,z));
} int minDistance(string word1, string word2) {
int n1 = word1.size();
int n2 = word2.size();
if (n1==) return n2;
if (n2==) return n1;
vector< vector<int> > m(n1+, vector<int>(n2+));
for(int i=; i<m.size(); i++){
m[i][] = i;
}
for (int i=; i<m[].size(); i++) {
m[][i]=i;
} //Dynamic Programming
int row, col;
for (row=; row<m.size(); row++) {
for(col=; col<m[row].size(); col++){
if (word1[row-] == word2[col-] ){
m[row][col] = m[row-][col-];
}else{
int minValue = min(m[row-][col-], m[row-][col], m[row][col-]);
m[row][col] = minValue + ;
}
}
} return m[row-][col-];
}

72. Edit Distance *HARD*的更多相关文章

  1. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

  2. 刷题72. Edit Distance

    一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...

  3. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  4. 72. Edit Distance

    题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...

  5. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  6. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  7. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  8. 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. 【一天一道LeetCode】#72. Edit Distance

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given t ...

随机推荐

  1. PHP二维数组排序(感谢滔哥lvtao.net)

    滔哥原创 /* _ooOoo_ o8888888o 88" . "88 (| -_- |) O\ = /O ____/`---'\____ .' \\| |// `. / \\|| ...

  2. 10:Python2与Python3比较

    1.print 函数 1. print语句没有了,取而代之的是print()函数. Python 2.6与Python 2.7部分地支持这种形式的print语法. 2.Unicode 1.  在pyt ...

  3. 20145337 《网络对抗技术》Web基础

    20145337 <网络对抗技术>Web基础 一.实验后回答问题 什么是表单? 表单是HTML的一个重要部分,主要用于将用户输入的信息提交到服务器.如果是普通的HTML页面,则当浏览器提出 ...

  4. FATFS(A)

    (一),什么是文件管理系统 答:数据在PC上是以文件的形式储存在磁盘中的,这些数据的形式一般为ASCII码或二进制形式.简单点说就是:管理磁盘上的文件的方法的代码! 如:我们写到SD卡上面的数据管理一 ...

  5. 把一个activity作为弹窗

    1.可以在这个activity的xml中设置其高度为某个固定高度 2.在java中:getWindow().setGravity(Gravity.BOTTOM);//设置在底部出现  getWindo ...

  6. 高通计划停用MSM 以SDM为移动平台命名【转】

    本文转载自:http://www.eeworld.com.cn/xfdz/article_2017061566458.html 据外媒报道,高通公司计划停用骁龙移动平台型号前面的MSM字样,以SDM取 ...

  7. 从bios启动说起

    如果从bios启动说起的话,BIOS去加载bootloader,bootloader去加载操作系统,那么bootloader是怎么找到操作系统的呢?经过一些流程后,它会去找grub:然后通过grub提 ...

  8. 【集群搭建】Zookeeper集群环境配置

    1.下载解压安装文件 2.配置文件:conf/zoo.cfg tickTime=2000 dataDir=/usr/sunny/logs/zookeeper/data dataLogDir=/usr/ ...

  9. DBMS 数据库管理系统 DataBase Management System

  10. SQL 事务(Transaction)

    1.概念 指访问并可能更新数据库中各种数据项的一个程序执行单元(unit)由多个sql语句组成,必须作为一个整体执行这些sql语句作为一个整体一起向系统提交,要么都执行.要么都不执行 语法步骤:开始事 ...