https://vjudge.net/problem/UVA-12627

题意:一开始有一个红气球。每小时后,一个红气球会变成3个红气球和1个蓝气球,而1个蓝气球会变成4个蓝气球。如图所示分别是经过0,1,2,3,小时后得情况。经过k小时后,第A~B行一共有多少个红气球。

思路:由图分析,每次把图分为四个部分,右下角的部分全为蓝气球,不用去管他,剩下三部分都是一样的并且和前一小时的图形是一样的,这样的话我们可以计算出每个时刻红气球的总数。

既然每次可以分为四部分,那么很明显的就是用分治法来解决。分别计算出B行之前和A-1行之前的红气球总数,那么A~B行的气球总数就是两者相减。

 #include<iostream>
using namespace std; long long ans[]; long long f(int k,int i)
{
if (i==) return ;
if (k==) return ;
if (i < << (k - )) return * f(k - , i);
else return f(k - , i - ( << (k - ))) + * ans[k - ];
} int main()
{
//freopen("D:\\txt.txt", "r", stdin);
int n;
cin >> n;
int k, a, b, kase=;
ans[] = ;
for (int i = ; i < ; i++)
{
ans[i] = * ans[i - ];
}
for (int i = ; i < n; i++)
{
cin >> k >> a >> b;
long long num = f(k, b) - f(k, a - );
cout << "Case " << ++kase << ": " << num << endl;
}
return ;
}

UVa 12627 奇怪的气球膨胀(分治)的更多相关文章

  1. UVA - 12627 Erratic Expansion 奇怪的气球膨胀 (分治)

    紫书例题p245 Piotr found a magical box in heaven. Its magic power is that if you place any red balloon i ...

  2. UVA - 12627 Erratic Expansion(奇怪的气球膨胀)(递归)

    题意:问k小时后,第A~B行一共有多少个红气球. 分析:观察图可发现,k小时后,图中最下面cur行的红气球个数满足下式: (1)当cur <= POW[k - 1]时, dfs(k, cur) ...

  3. UVA 12673 Erratic Expansion 奇怪的气球膨胀 (递推)

    不难发现,每过一个小时,除了右下方的气球全都是蓝色以外,其他都和上一个小时的气球是一样的,所以是可以递推的.然后定义一类似个前缀和的东西f(k,i)表示k小时之后上面i行的红气球数.预处理出k小时的红 ...

  4. uva 1614奇怪的股市(归纳法证明,贪心)

    uva 1614奇怪的股市(归纳法证明,贪心) 输入一个长度为n的序列a,满足\(1\le a_i\le i\),要求确定每个数的正负号,使得所有数的总和为0.例如a={1, 2, 3, 4},则4个 ...

  5. UVa 12627 Erratic Expansion - 分治

    因为不好复制题目,就出给出链接吧: Vjudge传送门[here] UVa传送门[here] 请仔细看原题上的那幅图,你会发现,在时间t(t > 0),当前的气球构成的一幅图,它是由三个时间为( ...

  6. UVa 12627 (递归 计数 找规律) Erratic Expansion

    直接说几个比较明显的规律吧. k个小时以后,红气球的个数为3k. 单独观察一行: 令f(r, k)为k个小时后第r行红气球的个数. 如果r为奇数,f(r, k) = f((r+1)/2, k-1) * ...

  7. uva 12627

    题意:开始有1个红气球,每小时后1个红气球会变为3个红气球和1个蓝气球,问k小时后第A行到第B行的气球数. 解:用g(k,i)表示第k小时时,从底部数i行的红气球数.所以ans = g(k,2^k-A ...

  8. Uva 12627 Erratic Expansion(递归)

    这道题大体意思是利用一种递归规则生成不同的气球,问在某两行之间有多少个红气球. 我拿到这个题,一开始想的是递归求解,但在如何递归求解的思路上我的方法是错误的.在研读了例题上给出的提示后豁然开朗(顺便吐 ...

  9. 紫书 例题8-12 UVa 12627 (找规律 + 递归)

    紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...

随机推荐

  1. InnoSQL HA Suite的实现原理与配置说明 InnoSQL的VSR功能Virtual Sync Replication MySQL 5.5版本引入了半同步复制(semi-sync replicaiton)的功能 MySQL 5.6支持了crash safe功能

    InnoSQL HA Suite的实现原理与配置说明  InnoSQL的VSR功能Virtual Sync Replication MySQL 5.5版本引入了半同步复制(semi-sync repl ...

  2. vue学习六之vuex

    由于状态零散地分布在许多组件和组件之间的交互中,大型应用复杂度也经常逐渐增长.为了解决这个问题,Vue 提供 vuex. 什么是Vuex Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式 ...

  3. POJ3096:Surprising Strings(map)

    http://poj.org/problem?id=3096 for循环真是奇妙! #include <string.h> #include <stdio.h> #includ ...

  4. UMI标签学习【转载】

    转自: https://club.1688.com/threadview/50123159.htm 简单介绍一下利用单分子标签(Unique Molecular Identifier,UMI)对残留噪 ...

  5. Py之np.concatenate函数【转载】

    转自:https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html 1.nupmy.concatenate函数 ...

  6. Andrew Ng-ML-第十五章-降维

    1.数据压缩 数据压缩不仅能够减小存储空间,并且能够加速学习算法.那么什么是数据压缩呢?下面给出了一个简单的例子: 图1.数据压缩的概念 举了两个例子,一个是横轴x1是厘米,纵轴特征x2是英尺,这明显 ...

  7. selenium webdriver窗口切换(上)

    selenium webdriver窗口切换,有时候在做自动化的时候需要打开很多很多的页面, 当在操作不同的页面的时候需要切换窗口,下面是如何切换到前后页面窗口的操作: package test201 ...

  8. input text文本框内部最后面放一个按钮

    .ContSpan { border: 1px solid #; display: inline-block; } .ContSpan span { cursor: pointer; backgrou ...

  9. lnmp之php5.6.29安装

    linux下lnmp环境之php安装 为了防止出现缺失,安装下面集成,复制的时候请将这个复制成一个整行,下面3行是一整行 [root@localhost src]# yum -y install gc ...

  10. Navicat 连接 Mysql8.0 出现2059问题的解决方法

    ``` 登陆Mysql后执行命令 ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY 'password'; ...