题意:已知空钱罐质量和满钱罐质量(也就是知道钱罐里的钱的质量),知道若干种钱币每种的质量以及其价值,钱币都是无限个,问最少钱罐中有多少钱。

这个题在集训的时候学长给我们做过,所以你会做是应该的,由于已经有固定的质量,所以是必须正好放满的完全背包问题。然后```具体过程就不细讲了完全背包依旧是经典,你要是还不会就滚回去看背包九讲并且无颜见学长们了```

 #include<stdio.h>
#include<string.h>
#define min(a,b) a<b?a:b
int p[],w[],dp[]; int main(){
int T;
while(scanf("%d",&T)!=EOF){
for(int q=;q<=T;q++){
memset(dp,-,sizeof(dp));
int E,F,N;
dp[]=;
scanf("%d%d%d",&E,&F,&N);
int i,j,k,w0=F-E;
for(i=;i<=N;i++){
scanf("%d%d",&p[i],&w[i]);
for(j=w[i];j<=w0;j++){
if(dp[j-w[i]]>=){
if(dp[j]>=){
dp[j]=min(dp[j],dp[j-w[i]]+p[i]);
}
else dp[j]=dp[j-w[i]]+p[i];
}
}
}
if(dp[w0]==-)printf("This is impossible.\n");
else printf("The minimum amount of money in the piggy-bank is %d.\n",dp[w0]);
}
}
return ;
}

hdu1114 dp(完全背包)的更多相关文章

  1. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

  2. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

  3. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  4. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  5. HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化)

    HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化) 题意分析 首先C表示测试数据的组数,然后给出经费的金额和大米的种类.接着是每袋大米的 ...

  6. HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包)

    HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包) 题意分析 裸完全背包 代码总览 #include <iostream> #include <cstdio& ...

  7. HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)

    HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...

  8. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  9. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  10. POJ.3624 Charm Bracelet(DP 01背包)

    POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...

随机推荐

  1. 关于网站的SYN_RECV(SYN_RECEIVED)***的防范措施

    关于网站的SYN_RECV(SYN_RECEIVED)***的防范措施 一.总结 一句话总结:SYN ***是最常见又最容易被利用的一种***手法.相信很多人还记得2000年YAHOO网站遭受的*** ...

  2. SVN提交文件失败:系统找不到指定路径

    完成程序代码工作后,进行SVN的文件提交.先进行项目的更新,然后在修改的文件上进行提交操作,发现SVN弹出提示信息,“系统找不到指定路径”提交失败,如下图:                       ...

  3. WPF中的动画

    动画无疑是WPF中最吸引人的特色之一,其可以像Flash一样平滑地播放并与程序逻辑进行很好的交互.这里我们讨论一下故事板. 在WPF中我们采用Storyboard(故事板)的方式来编写动画,为了对St ...

  4. Bug in Code CodeForces - 420C (计数,图论)

    大意: 给定$n$结点无向图, 共n条边, 有重边无自环, 求有多少点对(u,v), 满足经过u和v的边数>=p 可以用双指针先求出所有$deg_u+deg_v \ge p$的点对, 但这样会多 ...

  5. MVC 模式——第3章

    在深入到 ASP.NET MVC 框架的细节之间,最好熟悉 MVC 的设计模式及其背后的思想.良好地理解 MVC 背后的内容,有助于在阅读本书的过程中将该框架的特性放到相关的情境之中. 3.2 理解 ...

  6. ** exception error: no match of right hand side value

    错误发生的情况是模式匹配失败.对于badmatch异常,很难找到单一的原因,但经常性的原因是你无意间尝试绑定已绑定过的变量.

  7. 【转】jieba.NET与Lucene.Net的集成

    首先声明:我对Lucene.Net并不熟悉,但搜索确实是分词的一个重要应用,所以这里还是尝试将两者集成起来,也许对你有一参考. 看到了两个中文分词与Lucene.Net的集成项目:Lucene.Net ...

  8. js框架封装简单实例

    (function(){ window["event"] = {} //event注册到window上面 function init(data){ // 定义一个init内部函数 ...

  9. (C#基础)反射理解

    这个知识点很基础. 代码 using System; using System.Collections.Generic; using System.Linq; using System.Text; n ...

  10. bzoj1091

    题解: 暴力枚举顺序 然后计算几何 代码: #include<bits/stdc++.h> ],lp=; double v1,v2,ans=1e10; struct pos { doubl ...