The Wall has down and the King in the north has to send his soldiers to sentinel.
The North can be regard as a undirected graph (not necessary to be
connected), one soldier can cover one path. Today there's no so many
people still breathing in the north, so the King wants to minimize the
number of soldiers he sent to cover each edge exactly once. As a master
of his, you should tell him how to arrange soldiers.
InputThere might be multiple test cases, no more than 20. You need to read till the end of input.

In the first line, two integers n and m, representing the number of nodes and edges in the graph.

In the following m lines, each contain two integers, representing two ends of an edge.

There are no parallel edges or self loops.

1≤n,m≤100000
OutputFor each test case, the first line contains number of needed routes, p.

For the following p lines, an integer x in the beginning, followed
by x integers, representing the list of used edges. Every integer should
be a positive or negative integer. Its absolute value represents the
number of chosen edge (1~n). If it's positive, it shows that this edge
should be passed as the direction as the input, otherwise this edge
should be passed in the direction different from the input. Edges should
be in correct order.Sample Input

3 3
1 2
1 3
2 3

Sample Output

1
3 1 3 -2

思路:把奇点配对,然后求欧拉回路。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn<<],To[maxn<<],cnt,num;
int x[maxn],y[maxn],ind[maxn]; bool used[maxn],vis[maxn<<];
vector<int>G[maxn]; int tot,M;
void add(int u,int v)
{
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; vis[cnt]=;
}
void dfs(int u,int f)
{
used[u]=;
for(int &i=Laxt[u];i;i=Next[i]){
if(!vis[i]){
vis[i]=vis[i^]=;
dfs(To[i],i);
}
}
if(!f) return ;
if(f<=(M<<|)) G[tot].push_back(f&?(f>>):-(f>>));
else tot++;
}
int main()
{
int N;
while(~scanf("%d%d",&N,&M)){
rep(i,,M) scanf("%d%d",&x[i],&y[i]);
cnt=; tot=;
rep(i,,N) Laxt[i]=used[i]=ind[i]=;
rep(i,,M) {
add(x[i],y[i]); add(y[i],x[i]);
ind[x[i]]++; ind[y[i]]++;
}
int x=;
rep(i,,N) {
if(ind[i]&){
if(x) add(x,i), add(i,x),x=;
else x=i;
}
}
rep(i,,N) if(!used[i]&&(ind[i]&)){
tot++; dfs(i,); tot--;
}
rep(i,,N) if(!used[i]&&ind[i]) {
tot++; dfs(i,);
}
printf("%d\n",tot);
rep(i,,tot) {
printf("%d",G[i].size()); int L=G[i].size();
rep(j,,L-) printf(" %d",G[i][j]); puts("");
}
rep(i,,tot) G[i].clear();
}
return ;
}

HDU - 6311:Cover(欧拉回路,最少的一笔画覆盖无向图)的更多相关文章

  1. HDU 6311 Cover (无向图最小路径覆盖)

    HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...

  2. HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)

    题意 给个无向图,无重边和自环,问最少需要多少路径把边覆盖了.并输出相应路径 分析 首先联通块之间是独立的,对于一个联通块内,最少路径覆盖就是  max(1,度数为奇数点的个数/2).然后就是求欧拉路 ...

  3. HDU - 6311 Cover (欧拉路径)

    题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1}  条路径.将奇度数的点两两相连边(虚边),然后先 ...

  4. hdu 5386 Cover (暴力)

    hdu 5386 Cover Description You have an matrix.Every grid has a color.Now there are two types of oper ...

  5. HDU 6311 最少路径覆盖边集 欧拉路径

    Cover Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  6. hdu 6311 欧拉回路

    题意:求一个图(不一定联通)最小额外连接几条边,使得可以一笔画出来 大致做法 1.找出联通块 2.统计每一个连通块里面度数为奇数的点的个数, 有一个性质 一个图能够用一笔画出来,奇数点的个数不超过2个 ...

  7. hdu 1150 Machine Schedule 最少点覆盖转化为最大匹配

    Machine Schedule Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...

  8. hdu 1150 Machine Schedule 最少点覆盖

    Machine Schedule Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...

  9. HDOJ 1878 欧拉回路 nyoj 42一笔画问题

    #include<cstdio> #include<cstring> ]; int find(int x) { if(visited[x]!=x) return find(vi ...

随机推荐

  1. android照相及照片上传

        Java代码 package com.android.cist.camera.view; import java.io.ByteArrayOutputStream; import java.i ...

  2. Codeforces 918C - The Monster

    918C - The Monster 思路1: 右键在新窗口打开图片 代码: #include<bits/stdc++.h> using namespace std; #define ll ...

  3. OpenGL入门程序五:三维绘制

    1.现实世界观察一个物体的时候,可能涉及到的三维变化: 1>视图变化------从不同的角度观察. 2>模型变化------移动.旋转物体,计算机中当然还可以对物体进行缩放. 3>投 ...

  4. grub 启动错误 "file not found"

    刚安装ubuntu 14.4 竟然出现这么尴尬的事,ubuntu 行不行? 幸好还是能从u盘启动后,转到硬盘. 然后在网上找到了解决方法. http://askubuntu.com/questions ...

  5. WPF使用Webbrowser操作网页的主要代码

    1,引用mshtml.dll using mshtml; 2,获取元素属性值 IHTMLDocument2 doc2=(IHTMLDocument)webbrowser1.Document; IHTM ...

  6. Java基础-封装(09)

    通过对象直接访问成员变量,会存在数据安全问题(比如年龄不能为负).这个时候,我们就不能让外界的对象直接访问成员变量. private关键字 是一个权限修饰符.可以修饰成员(成员变量和成员方法)被pri ...

  7. pandas的concat函数和append方法

    pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,keys=None, levels=None, nam ...

  8. bzoj 1267 Kth Number I (点分治,堆)

    超级钢琴的树上版本, 类似做法即可, 只不过区间转为dfs序了, 用点分求一下, 复杂度$O(nlog^2n)$ #include <iostream> #include <algo ...

  9. 比较windows下的5种IO模型

    看到一个很有意思的解释: 老陈有一个在外地工作的女儿,不能经常回来,老陈和她通过信件联系.他们的信会被邮递员投递到他们的信箱里. 这和Socket模型非常类似.下面我就以老陈接收信件为例讲解Socke ...

  10. UVA-12569 Planning mobile robot on Tree (EASY Version) (BFS+状态压缩)

    题目大意:一张无向连通图,有一个机器人,若干个石头,每次移动只能移向相连的节点,并且一个节点上只能有一样且一个东西(机器人或石头),找出一种使机器人从指定位置到另一个指定位置的最小步数方案,输出移动步 ...