理解Storm Metrics
Storm exposes a metrics interface to report summary statistics across the full topology. It's used internally to track the numbers you see in the Nimbus UI console: counts of executes and acks; average process latency per bolt; worker heap usage; and so forth.
public interface IMetric {
public Object getValueAndReset();
}
public class ReducedMetric implements IMetric {
private final IReducer _reducer;
private Object _accumulator; public ReducedMetric(IReducer reducer) {
_reducer = reducer;
_accumulator = _reducer.init();
} public void update(Object value) {
_accumulator = _reducer.reduce(_accumulator, value);
} public Object getValueAndReset() {
Object ret = _reducer.extractResult(_accumulator);
_accumulator = _reducer.init();
return ret;
}
}
class MeanReducerState {
public int count = 0;
public double sum = 0.0;
} public class MeanReducer implements IReducer<MeanReducerState> {
public MeanReducerState init() {
return new MeanReducerState();
} public MeanReducerState reduce(MeanReducerState acc, Object input) {
acc.count++;
if(input instanceof Double) {
acc.sum += (Double)input;
} else if(input instanceof Long) {
acc.sum += ((Long)input).doubleValue();
} else if(input instanceof Integer) {
acc.sum += ((Integer)input).doubleValue();
} else {
throw new RuntimeException(
"MeanReducer::reduce called with unsupported input type `" + input.getClass()
+ "`. Supported types are Double, Long, Integer.");
}
return acc;
} public Object extractResult(MeanReducerState acc) {
if(acc.count > 0) {
return acc.sum / (double) acc.count;
} else {
return null;
}
}
}
context.registerMetric("execute_count", countMetric, 5);
context.registerMetric("word_count", wordCountMetric, 60);
context.registerMetric("word_length", wordLengthMeanMetric, 60);
IMetricsConsumer
Listens for all metrics, dumps them to log To use, add this to your topology's configuration: ```java conf.registerMetricsConsumer(org.apache.storm.metrics.LoggingMetricsConsumer.class, 1); ``` Or edit the storm.yaml config file: ```yaml topology.metrics.consumer.register: - class: "org.apache.storm.metrics.LoggingMetricsConsumer" parallelism.hint: 1
config.registerMetricsConsumer(LoggingMetricsConsumer.class, 2);
/usr/local/apache-storm-1.0.1/logs/workers-artifacts/FirstTopo-46-1468485056/6703 -rw-rw-r-- 1 java java 55K 7月 14 18:47 gc.log.0
-rw-rw-r-- 1 java java 28K 7月 14 18:47 worker.log
-rw-rw-r-- 1 java java 0 7月 14 16:31 worker.log.err
-rw-rw-r-- 1 java java 1.2M 7月 14 18:47 worker.log.metrics
-rw-rw-r-- 1 java java 0 7月 14 16:31 worker.log.out
-rw-rw-r-- 1 java java 5 7月 14 16:31 worker.pid
-rw-rw-r-- 1 java java 120 7月 14 16:31 worker.yaml
2016-07-14 16:31:40,700 31721 1468485098 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:31:45,702 36723 1468485103 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:31:50,702 41723 1468485108 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:32:10,705 61726 1468485128 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:32:15,708 66729 1468485133 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:32:25,699 76720 1468485143 192.168.1.127:6702 6:bolt __ack-count {spout:default=60}
2016-07-14 16:32:25,701 76722 1468485143 192.168.1.127:6702 6:bolt __sendqueue {sojourn_time_ms=0.0, write_pos=10, read_pos=10, arrival_rate_secs=0.10267994660642776, overflow=0, capacity=1024, population=0}
2016-07-14 16:32:25,701 76722 1468485143 192.168.1.127:6702 6:bolt word_count {happy=18, angry=19, excited=14}
2016-07-14 16:32:25,702 76723 1468485143 192.168.1.127:6702 6:bolt __receive {sojourn_time_ms=817.6666666666666, write_pos=62, read_pos=61, arrival_rate_secs=1.222992254382389, overflow=0, capacity=1024, population=1}
理解Storm Metrics的更多相关文章
- 用实例的方式去理解storm的并发度
什么是storm的并发度 一个topology(拓扑)在storm集群上最总是以executor和task的形式运行在suppervisor管理的worker节点上.而worker进程都是运行在jvm ...
- 理解Storm并发
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 注:本文主要内容翻译自understanding-the-parall ...
- storm源码之理解Storm中Worker、Executor、Task关系 + 并发度详解
本文导读: 1 Worker.Executor.task详解 2 配置拓扑的并发度 3 拓扑示例 4 动态配置拓扑并发度 Worker.Executor.Task详解: Storm在集群上运行一个To ...
- 【原】理解Storm拓扑的并行
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理 ...
- 理解storm的ACKER机制原理
一.简介: storm中有一个很重要的特性: 保证发出的每个tuple都会被完整处理.一个tuple被完全处理的意思是: 这个tuple以及由这个tuple所产生的所有的子tuple都被成 ...
- 【原】【译文】理解storm拓扑并行度
原文地址: http://storm.apache.org/releases/1.2.1/Understanding-the-parallelism-of-a-Storm-topology.html ...
- 理解Storm可靠性消息
看过一些别人写的, 感觉有些东西没太说清楚,个人主要以源代码跟踪,参考个人理解讲述,有错误请指正. 1基本名词 1.1 Tuple: 消息传递的基本单位.很多文章中介绍都是这么说的, 个人觉得应该更详 ...
- 【原】storm源码之理解Storm中Worker、Executor、Task关系
Storm在集群上运行一个Topology时,主要通过以下3个实体来完成Topology的执行工作:1. Worker(进程)2. Executor(线程)3. Task 下图简要描述了这3者之间的关 ...
- 理解 Storm 拓扑的并行度(parallelism)概念
组成:一个运行中的拓扑是由什么构成的:工作进程(worker processes),执行器(executors)和任务(tasks)! 在一个 Storm 集群中,Storm 主要通过以下三个部件来运 ...
随机推荐
- Linux下C++的通用Makefile与解析
本文给出万能Makefile的具体实现,以及对其中的关键点进行解析.所谓C++万能Makefile,即可编译链接所有的C++程序,而只需作很少的修改. 号称万能Makefile,一统江湖.我对原版的M ...
- Elasticsearch 索引的全量/增量更新
Elasticsearch 索引的全量/增量更新 当你的es 索引数据从mysql 全量导入之后,如何根据其他客户端改变索引数据源带来的变动来更新 es 索引数据呢. 首先用 Python 全量生成 ...
- nginx+keepalived实现负载均衡nginx的高可用
准备四台服务器 两台做主备,另外两台做访问 192.168.1.120 master 192.168.1.121 backup 192.168.1.122 nginx 192.168.1.123 ng ...
- 获取的时候报cannot find package "golang.org /x/net/context",编译也报错误
gitclone 这个https://github.com/golang/net.git ,编译通过了. 创建了相应的golang.org/x/ 路径, 然后将克隆的目录 放回golang.org/ ...
- greasemonkey修改网页内指定函数
greasemonkey replace function? 方法1:编写GM代码 alert("hello2"); var mydiv =document.getElementB ...
- linux挂载SD卡
(1)通过#fdisk -l命令确认板子上的linux系统是否识别SD卡 MP805M板子插入SD卡后显示 SD30 slot is without WPmmc1: new high speed SD ...
- IdentityHashMap 与 HashMap 的区别
IdentityHashMap 中的 key 允许重复 IdentityHashMap 使用的是 == 比较 key 的值(比较内存地址),而 HashMap 使用的是 equals()(比较存储值) ...
- RESTful 接口设计规范
get 用来获取,post 用来新建(也可以用于更新),put 用来更新,delete 用来删除.
- php设计模式:单例模式
前些日子开始着真正的去了解下设计模式,开始么,简单地从单例模式开始,当然网上看了一些资料,单例模式比较好理解,看看介绍,然后看看代码基本也就能够理解了,设计模式这些的花点心思基本的是能够理解的,当然要 ...
- centos6 yum安装最新版mysql5.7
在看来mysql5.7诸多改进介绍后,决定也安装一个试用下:本文将使用rpm的方式来安装. 环境:OS: CentOS6.5 x86_64 最小化安装MEM: 1GCPU: 1 1. 本文连着上一篇安 ...