Binary Tree Traversals

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2442    Accepted Submission(s): 1063

Problem Description
A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.

In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.

In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.

In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.

Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.

 
Input
The input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.
 
Output
For each test case print a single line specifying the corresponding postorder sequence.
 
Sample Input
9
1 2 4 7 3 5 8 9 6
4 7 2 1 8 5 9 3 6
 
Sample Output
7 4 2 8 9 5 6 3 1
 
Source
 
Recommend
lcy
 

题意:

给你一个前序遍历和中序遍历,要求后序。

可以由先序和中序的性质得到 : 先序的第一个借点肯定是当前子树的根借点, 那么在

中序中找到这个结点, 则这个结点左边的节点属于左子树, 右边的属于右子树。然后递归遍历就可以了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack> using namespace std; const int N=; int n,pre[N],in[N]; //先序数组和后序数组
stack<int> st; //存放父节点 void build(int l1,int r1,int l2,int r2){ //l1,r1,是先序遍历的数组的开始和末尾,l2,r2是中序遍历的数组的开始和末尾
int i,j;
st.push(pre[l1]); //父节点入栈
for(i=l2;i<=r2;i++)
if(in[i]==pre[l1]) //找到父节点在中序遍历的位置i
break;
j=l1+(i-l2+); //确定左子树和右子树在先序遍历的分界点j,即右子树的父节点
if(j<=r1 && i+<=r2) //求解右子树
build(j,r1,i+,r2);
if(l1+<=j- && l2<=i-) //求解左子树
build(l1+,j-,l2,i-);
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d",&n)){
for(int i=;i<n;i++)
scanf("%d",&pre[i]);
for(int i=;i<n;i++)
scanf("%d",&in[i]);
build(,n-,,n-);
while(!st.empty()){
printf("%d",st.top());
st.pop();
if(!st.empty())
printf(" ");
}
printf("\n");
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
#include<cstdlib> using namespace std; const int N=; struct Tree{
Tree *l,*r;
int x;
}tree; Tree *root; Tree *Create(int *pre,int *in,int n){
Tree *tmp;
for(int i=;i<n;i++)
if(pre[]==in[i]){ //找到中序遍历时的根节点
tmp=(Tree *)malloc(sizeof(Tree));
tmp->x=in[i];
tmp->l=Create(pre+,in,i); //中序历遍中在根节点左边的都是左子树上的
tmp->r=Create(pre+i+,in+i+,n-(i+)); //在根节点右边的,都是右子树上的,右子树需要从i+1开
return tmp;
}
return NULL;
} void PostOrder(Tree *rt){ //后序历遍
if(rt!=NULL){
PostOrder(rt->l);
PostOrder(rt->r);
if(rt==root)
printf("%d\n",rt->x);
else
printf("%d ",rt->x);
}
} int main(){ //freopen("input.txt","r",stdin); int n,pre[N],in[N]; //先序数组和后序数组
while(~scanf("%d",&n)){
root=NULL;
for(int i=;i<n;i++)
scanf("%d",&pre[i]);
for(int i=;i<n;i++)
scanf("%d",&in[i]);
root=Create(pre,in,n);
Tree *rt=root;
PostOrder(rt);
}
return ;
}

HDU 1710 Binary Tree Traversals (二叉树遍历)的更多相关文章

  1. hdu 1710 Binary Tree Traversals 前序遍历和中序推后序

    题链;http://acm.hdu.edu.cn/showproblem.php?pid=1710 Binary Tree Traversals Time Limit: 1000/1000 MS (J ...

  2. HDU 1710 Binary Tree Traversals(二叉树)

    题目地址:HDU 1710 已知二叉树先序和中序求后序. #include <stdio.h> #include <string.h> int a[1001], cnt; ty ...

  3. hdu1710(Binary Tree Traversals)(二叉树遍历)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  4. HDU 1710 Binary Tree Traversals(树的建立,前序中序后序)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  5. HDU 1710 Binary Tree Traversals(二叉树遍历)

    传送门 Description A binary tree is a finite set of vertices that is either empty or consists of a root ...

  6. 【二叉树】hdu 1710 Binary Tree Traversals

    acm.hdu.edu.cn/showproblem.php?pid=1710 [题意] 给定一棵二叉树的前序遍历和中序遍历,输出后序遍历 [思路] 根据前序遍历和中序遍历递归建树,再后续遍历输出 m ...

  7. HDU 1710 Binary Tree Traversals

    题意:给出一颗二叉树的前序遍历和中序遍历,输出其后续遍历 首先知道中序遍历是左子树根右子树递归遍历的,所以只要找到根节点,就能够拆分出左右子树 前序遍历是按照根左子树右子树递归遍历的,那么可以找出这颗 ...

  8. hdu 1701 (Binary Tree Traversals)(二叉树前序中序推后序)

                                                                                Binary Tree Traversals T ...

  9. hdu1710 Binary Tree Traversals(二叉树的遍历)

    A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjo ...

随机推荐

  1. NLP常用信息资源

    ACL Anthology,囊括了ACL,EMNLP,CL等NLP领域重要会议和期刊的论文.http://www.aclweb.org/anthology-new/ LDC: The Linguist ...

  2. ubuntu完全卸载apache2

    最近刚接触ubuntu和apache,第一次配置就被apahce搞到完全崩溃,跟着网上的配置修改apache的charset和apache2.conf以后,开始出现访问http://localhost ...

  3. How to skip to next iteration in jQuery.each() util?

      [问] I'm trying to iterate through an array of elements. jQuery's documentation says: jquery.Each() ...

  4. [Algorithm] Count occurrences of a number in a sorted array with duplicates using Binary Search

    Let's say we are going to find out number of occurrences of a number in a sorted array using binary ...

  5. Android版-微信APP支付

    首发地址: Android版-微信APP支付 欢迎留言.转发 微信极速开发系列文章(微信支付.授权获取用户信息等):点击这里 目录 1.注册账号.开发者认证 2.添加应用 3.申请微信支付 4.技术开 ...

  6. 编译安装openssl报错:POD document had syntax errors at /usr/bin/pod2man line 69. make: *** [install_docs]

    错误如下: cms.pod around line 457: Expected text after =item, not a number cms.pod around line 461: Expe ...

  7. PHP的异常以及异常存在的意义

    php的try catch与其它语言的try catch相比有许多不同,而且用起来相对比较不爽. php中,如果你制作的站点相对较大,同时模块化,并且在错误处理机制上有一套自己的处理机制,可以尝试使用 ...

  8. PD 之 连接数据库并导出数据及生成PDM文件

    使用PowerDesigner工具,连接数据库并导出数据及生成PDM文件. 1.建立连接 “以管理员身份运行”打开PowerDesigner,右键“Workspace”→“New”→“Physical ...

  9. 微信小程序 - 深度定义骨架屏(提示)

    此举每个页面必须创建对应的css样式,比较麻烦(但非常准确),推荐使用组件化的skeleton组件 原理很简单:知晓一下this.setData原理,就OK了,可能大家会因此了解到全屏加载loadin ...

  10. POSTGRESQL 锁表的问题

    一.找出所的语句 select wait.pid, wait.query as wait_query, wait.query_start as wait_query_start, wait.lockt ...