The solution for the problem can be divided into three cases:

case 1: if the delete node is leaf node, then we can simply remove it

case 2: if the delete node is has single side or substree

case 3: it has two children, then to keep it as a valid binary search tree, we can copy the min value from right subtree to delete node, to convert the problem into case 2

function Node(val) {
return {
val,
left: null,
right: null
};
} function Tree() {
return {
root: null,
addLeft(val, root) {
const node = Node(val);
root.left = node;
return root.left;
},
addRight(val, root) {
const node = Node(val);
root.right = node;
return root.right;
}
};
} const tree = new Tree();
const root = Node();
tree.root = root;
const n1 = tree.addLeft(, root);
const n2 = tree.addRight(, root);
const n3 = tree.addLeft(, n1);
const n4 = tree.addRight(, n1);
tree.addLeft(, n3);
tree.addRight(, n4);
const n5 = tree.addLeft(, n2);
tree.addRight(, n5);
const n6 = tree.addRight(, n2);
const n7 = tree.addRight(, n6);
tree.addLeft(, n7); /**
*
12
/ \
5 15
/ \ / \
3 7 13 17
/ \ \ \
1 9 14 20
/
18 Delete 15
First copy 17 to 15
12
/ \
5 17
/ \ / \
3 7 13 17
/ \ \ \
1 9 14 20
/
18
Then remove original 17
12
/ \
5 17
/ \ / \
3 7 13 20
/ \ \ /
1 9 14 18 */ function deleteNode(root, val) {
// base case, if leaf node, return
if (root === null) {
return root;
} else if (val > root.val) {
// if delete value is larger than root, search on right side of tree
root.right = deleteNode(root.right, val);
} else if (val < root.val) {
// if delete value is smaller than root, search on left side of tree
root.left = deleteNode(root.left, val);
} else {
// if found the delete value and it is leaf node
if (root.left === null && root.right === null) {
// set leaf node to null
root = null;
}
// if found the delete node and its right side has children
// set root to null and link to its right node
else if (root.left === null && root.right !== null) {
let temp = root.right;
root = null;
root = temp;
}
// if found the delete node and its left side and children
// set root to null and link to its left node
else if (root.left !== null && root.right === null) {
let temp = root.left;
root = null;
root = temp;
}
// the found node has children on both sides
// then pick the min value from rgiht side (or max value from left side)
// copy to current node
// reset it right side (or left side)
else {
const temp = root.right; // get the min on the right side or max on the left side
root.val = temp.val;
root.right = deleteNode(root.right, temp.val);
} return root;
}
} deleteNode(tree.root, ); console.log(JSON.stringify(tree.root.left, null, ));

[Algorithm] Delete a node from Binary Search Tree的更多相关文章

  1. Lintcode: Remove Node in Binary Search Tree

    iven a root of Binary Search Tree with unique value for each node. Remove the node with given value. ...

  2. Remove Node in Binary Search Tree 解答

    从BST中移除一个节点是比较复杂的问题,需要分好几种情况讨论. 如这篇文章,就讨论了删除节点 1.有无左右子树 2.只有右子树 3.只有左子树 三种情况. 一种简单些的思维是只考虑删除节点是否有右子树 ...

  3. 【Lintcode】087.Remove Node in Binary Search Tree

    题目: Given a root of Binary Search Tree with unique value for each node. Remove the node with given v ...

  4. [Algorithm] Inorder Successor in a binary search tree

    For the given tree, in order traverse is: visit left side root visit right side // 6,8,10,11,12,15,1 ...

  5. 数据结构基础---Binary Search Tree

    /// Binary Search Tree - Implemenation in C++ /// Simple program to create a BST of integers and sea ...

  6. [Algorithm] Check if a binary tree is binary search tree or not

    What is Binary Search Tree (BST) A binary tree in which for each node, value of all the nodes in lef ...

  7. Lintcode: Insert Node in a Binary Search Tree

    Given a binary search tree and a new tree node, insert the node into the tree. You should keep the t ...

  8. LeetCode解题报告——Convert Sorted List to Binary Search Tree & Populating Next Right Pointers in Each Node & Word Ladder

    1. Convert Sorted List to Binary Search Tree Given a singly linked list where elements are sorted in ...

  9. 85. Insert Node in a Binary Search Tree【easy】

    Given a binary search tree and a new tree node, insert the node into the tree. You should keep the t ...

随机推荐

  1. RX库中的IDisposable对象

    IDisposable是.net中的主动资源释放接口,它是在编程过程中经常使用到的一个接口,本文介绍一下微软在Rx.NET中提供的一系列常用的Disposable类,通过它们可以简化我们的程序代码,提 ...

  2. 京东SSO单点登陆实现分析

    京东的sso流程: 初始访问状态: cookies: http请求:   1.在首页点击登陆,跳转至passport.360buy.com,给予验证cookie alc(可以试试在提交登陆信息前删除该 ...

  3. PHP 依赖注入(DI) 和 控制反转(IoC)

    要想理解 PHP 依赖注入 和 控制反转 两个概念,就必须搞清楚如下的两个问题: DI —— Dependency Injection 依赖注入 IoC —— Inversion of Control ...

  4. 对一个前端使用AngularJS后端使用ASP.NET Web API项目的理解(4)

    chsakell分享了一个前端使用AngularJS,后端使用ASP.NET Web API的项目. 源码: https://github.com/chsakell/spa-webapi-angula ...

  5. SMTP协议及POP3协议-邮件发送和接收原理(转)

    本文转自https://blog.csdn.net/qq_15646957/article/details/52544099 感谢作者 一. 邮件开发涉及到的一些基本概念 1.1.邮件服务器和电子邮箱 ...

  6. UnityShader之光照

    .基本概念 1.光源:unity支持的光源有四种 1)平行光Directional Light 2)点光源Point Light 3)聚光灯光源Spot Light 4)区域光光源Area Light ...

  7. SharePoint Online 设置网站集

    前言 本文介绍如何在Office 365中设置SharePoint Online网站集,当我们创建好SharePoint Online站点,开始使用之前,一定会有一些基本的设置,本文就为大家介绍这些基 ...

  8. Android安装和设置的方法

    问题:gradle project sync failed 1.进入C:\Users\自己的用户名\.gradle\wrapper\dists\gradle-1.12-all\2apkk7d25mia ...

  9. PHP开发微信被动回复消息遇到的大坑

    最近开始做CMS后台与微信公众号的整合,在做被动回复消息时,按照官方文档的XML格式回复消息,总是提示"该公众号提供的服务出现故障,请稍后再试".但是通过微信提供的接口调试工具看我 ...

  10. Java Callable接口与Future接口的两种使用方式

    Java Callable.Future的两种使用方式Callable+Futurepublic class Test { public static void main(String[] args) ...