The solution for the problem can be divided into three cases:

case 1: if the delete node is leaf node, then we can simply remove it

case 2: if the delete node is has single side or substree

case 3: it has two children, then to keep it as a valid binary search tree, we can copy the min value from right subtree to delete node, to convert the problem into case 2

function Node(val) {
return {
val,
left: null,
right: null
};
} function Tree() {
return {
root: null,
addLeft(val, root) {
const node = Node(val);
root.left = node;
return root.left;
},
addRight(val, root) {
const node = Node(val);
root.right = node;
return root.right;
}
};
} const tree = new Tree();
const root = Node();
tree.root = root;
const n1 = tree.addLeft(, root);
const n2 = tree.addRight(, root);
const n3 = tree.addLeft(, n1);
const n4 = tree.addRight(, n1);
tree.addLeft(, n3);
tree.addRight(, n4);
const n5 = tree.addLeft(, n2);
tree.addRight(, n5);
const n6 = tree.addRight(, n2);
const n7 = tree.addRight(, n6);
tree.addLeft(, n7); /**
*
12
/ \
5 15
/ \ / \
3 7 13 17
/ \ \ \
1 9 14 20
/
18 Delete 15
First copy 17 to 15
12
/ \
5 17
/ \ / \
3 7 13 17
/ \ \ \
1 9 14 20
/
18
Then remove original 17
12
/ \
5 17
/ \ / \
3 7 13 20
/ \ \ /
1 9 14 18 */ function deleteNode(root, val) {
// base case, if leaf node, return
if (root === null) {
return root;
} else if (val > root.val) {
// if delete value is larger than root, search on right side of tree
root.right = deleteNode(root.right, val);
} else if (val < root.val) {
// if delete value is smaller than root, search on left side of tree
root.left = deleteNode(root.left, val);
} else {
// if found the delete value and it is leaf node
if (root.left === null && root.right === null) {
// set leaf node to null
root = null;
}
// if found the delete node and its right side has children
// set root to null and link to its right node
else if (root.left === null && root.right !== null) {
let temp = root.right;
root = null;
root = temp;
}
// if found the delete node and its left side and children
// set root to null and link to its left node
else if (root.left !== null && root.right === null) {
let temp = root.left;
root = null;
root = temp;
}
// the found node has children on both sides
// then pick the min value from rgiht side (or max value from left side)
// copy to current node
// reset it right side (or left side)
else {
const temp = root.right; // get the min on the right side or max on the left side
root.val = temp.val;
root.right = deleteNode(root.right, temp.val);
} return root;
}
} deleteNode(tree.root, ); console.log(JSON.stringify(tree.root.left, null, ));

[Algorithm] Delete a node from Binary Search Tree的更多相关文章

  1. Lintcode: Remove Node in Binary Search Tree

    iven a root of Binary Search Tree with unique value for each node. Remove the node with given value. ...

  2. Remove Node in Binary Search Tree 解答

    从BST中移除一个节点是比较复杂的问题,需要分好几种情况讨论. 如这篇文章,就讨论了删除节点 1.有无左右子树 2.只有右子树 3.只有左子树 三种情况. 一种简单些的思维是只考虑删除节点是否有右子树 ...

  3. 【Lintcode】087.Remove Node in Binary Search Tree

    题目: Given a root of Binary Search Tree with unique value for each node. Remove the node with given v ...

  4. [Algorithm] Inorder Successor in a binary search tree

    For the given tree, in order traverse is: visit left side root visit right side // 6,8,10,11,12,15,1 ...

  5. 数据结构基础---Binary Search Tree

    /// Binary Search Tree - Implemenation in C++ /// Simple program to create a BST of integers and sea ...

  6. [Algorithm] Check if a binary tree is binary search tree or not

    What is Binary Search Tree (BST) A binary tree in which for each node, value of all the nodes in lef ...

  7. Lintcode: Insert Node in a Binary Search Tree

    Given a binary search tree and a new tree node, insert the node into the tree. You should keep the t ...

  8. LeetCode解题报告——Convert Sorted List to Binary Search Tree & Populating Next Right Pointers in Each Node & Word Ladder

    1. Convert Sorted List to Binary Search Tree Given a singly linked list where elements are sorted in ...

  9. 85. Insert Node in a Binary Search Tree【easy】

    Given a binary search tree and a new tree node, insert the node into the tree. You should keep the t ...

随机推荐

  1. CSDN博客的积分计算方法和博客排名规律

    开通博客一段时间了,近期莫名其妙得获得"持之以恒"的勋章,看着日益增长的积分,既兴奋又好奇.本人对CSDN博客积分的计算方法非常疑惑,也不知当中怎么回事,好奇度娘一番,并结合CSD ...

  2. 《大话设计模式》C#/C++版pdf/源码下载

    大话设计模式(带目录完整版)[中文PDF+源代码].zip 下载地址:http://pan.baidu.com/s/1giQP4大话设计模式C++.pdf下载地址:http://pan.baidu.c ...

  3. C# CSGL

    转.修改自ShareIdeas文章C# 基于CSGL opengl OpenGL是一个功能强大的开放图形库(Open Graphics Library).其前身是SGI公司为其图形工作站开发的IRIS ...

  4. Linux学习11-CentOS如何设置java环境变量

    前言 之前用yum安装的java,现在想添加环境变量,yum安装的java路径在哪呢?如何找到安装的路径,把jdk添加到环境变量. 本篇详细讲解linux系统设置java环境变量 找到jdk路径 之前 ...

  5. Convolutional Neural Networks at Constrained Time Cost(精读)

    一.文献名字和作者     Convolutional Neural Networks at Constrained Time Cost,CVPR 2015 二.阅读时间      2015年6月30 ...

  6. POST 和 PUT 方法区别

        Http定义了与 服务器的交互方法,其中除了一般我们用的最多的GET,POST 其实还有PUT和DELETE 根据RFC2616标准(现行的HTTP/1.1)其实还有OPTIONS,GET,H ...

  7. ios成长之每日一遍(day 1)

    Hello world开始. 这里不讨论如何创建项目导入项目.由于趁上班时间打酱油所以也不谈细节, 只谈具体项目的实现与关键流程的解析, 只供本人实际程况使用.不喜请移驾. 首先来谈谈 AppDele ...

  8. 《HTML5与CSS3基础教程(第8版)》

    <HTML5与CSS3基础教程(第8版)> 基本信息 原书名:HTML and CSS:visual quickstart guide 作者: (美)Elizabeth Castro    ...

  9. [Web 前端] CSS篇之3. 如何保持浮层水平垂直居中

    原文链接](http://www.cnblogs.com/yaliu/p/5190957.html) 浮层水平垂直居中方法 (一)利用绝对定位与transform <div class=&quo ...

  10. Caffe的solver参数介绍

      版权声明:转载请注明出处,谢谢! https://blog.csdn.net/Quincuntial/article/details/59109447 1. Parameters solver.p ...