Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA
如何搭建配置centos虚拟机请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网。》
如何安装hadoop2.9.0请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二)安装hadoop2.9.0》
如何配置zookeeper3.4.12 请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(八)安装zookeeper-3.4.12》
安装hadoop的服务器:
192.168.0.120 master
192.168.0.121 slave1
192.168.0.122 slave2
192.168.0.123 slave3
前言:
配置高可用(HA)集群在实际生产中可保证集群安全稳定高效的运行,下面讲解一下HA中的各个节点的作用。
1,zookeeper的java进程:QuorumPeermain,各种分布式服务(如hdfs,hbase,resourcemanager)注册到zookeeper上去,即可启动2个以上的相同进程(其中一个状态为active,其他为standby),那么,其中active节点挂了,可通过zookeeper进行切换到standby,让他active,保证进程正常运行。
2,namenode:hdfs的主节点,保存hdfs正常运行的各种必要元数据(保存在edits和fsimage文件中),万一挂了,整个集群就挂了,所以要配置多namenode。
3,datanode:hdfs的数据节点,保存真实数据的节点。
4,journalnode:日志节点,将namenode上的edits文件分离出来,弄成一个集群,保证namenode不被挂。
5,zkfc:全称DFSZKFailoverController,监控并管理namenode的状态和切换。
6,Resourcemanager:管理并分配集群的资源,如为nodemanager分配计算资源等。
7,nodemanager:管理datanode,并随datanode的启动而启动。
其实,最好每个节点跑一个进程,奈何机器性能不足,跑不了那么多虚拟机,就将几个节点放在同一个节点上,只将重要的进程(namenode和resourcemanager)放在不同的节点。
搭建集群前的工作:
首先是系统环境:
如何搭建配置centos虚拟机请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网。》
如何安装hadoop2.9.0请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二)安装hadoop2.9.0》
然后搭建zookeeper3.4.12请参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(八)安装zookeeper-3.4.12》
三,修改配置文件
先在master节点上修改配置文件,然后传到其他节点。
1)停掉hadoop服务并清除slaves上hadoop安装目录
master上:关闭hadoop服务,并清除dfs、logs、tmp目录
cd /opt/hadoop-2.9.
sbin/stop-all.sh
rm -r dfs
rm -r logs
rm -r tmp
slaves上:关闭hadoop服务,清除hadoop安装目录
cd /opt/hadoop-2.9.
sbin/stop-all.sh
rm -r *
2)etc/hadoop/hadoop-env.sh
cd /opt/hadoop-2.9./etc/hadoop
vi hadoop-env.sh
export JAVA_HOME = path_to_jdk #添加配置
3)core-site.xml修改
cd /opt/hadoop-2.9.0/etc/hadoop
vi core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<!-- <value>hdfs://master:9000/</value>-->
<value>hdfs://HA</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/hadoop-2.9.0/tmp</value>
<description>这里的路径默认是NameNode、DataNode、JournalNode等存放数据的公共目录</description>
</property>
<property>
<name>io.file.buffer.size</name>
<value>131702</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>master:2181,slave1:2181,slave2:2181</value>
<description>这里是ZooKeeper集群的地址和端口。注意,数量一定是奇数,且不少于三个节点</description>
</property>
<!-- 下面的配置可解决NameNode连接JournalNode超时异常问题-->
<property>
<name>ipc.client.connect.retry.interval</name>
<value>10000</value>
<description>Indicates the number of milliseconds a client will wait for before retrying to establish a server connection.
</description>
</property>
</configuration>
4)hdfs-site.xml修改
cd /opt/hadoop-2.9.0/etc/hadoop
vi hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为HA,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>HA</value>
</property>
<!-- HA下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.HA</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.HA.nn1</name>
<value>master:9000</value>
<description>9000为HDFS 客户端接入地址(包括命令行与程序),有的使用8020</description>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.HA.nn1</name>
<value>master:50070</value>
<description> namenode web的接入地址</description>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.HA.nn2</name>
<value>slave1:9000</value>
<description>9000为HDFS 客户端接入地址(包括命令行与程序),有的使用8020</description>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.HA.nn2</name>
<value>slave1:50070</value>
<description> namenode web的接入地址</description>
</property>
<!-- 指定NameNode的edits元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://master:8485;slave1:8485;slave2:8485/HA</value>
<description>指定 nn1 的两个NameNode共享edits文件目录时,使用的JournalNode集群信息。master\slave1主机中使用这个配置</description>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/hadoop-2.9.0/tmp/journal</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.HA</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/spark/.ssh/id_rsa</value>
<description>
[spark@master hadoop]$ cd /home/spark/.ssh/
[spark@master .ssh]$ ls
authorized_keys id_rsa.pub id_rsa.pub.slave2 known_hosts
id_rsa id_rsa.pub.slave1 id_rsa.pub.slave3
</description>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
<!--
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>master:9001</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/opt/hadoop-2.9.0/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/opt/hadoop-2.9.0/dfs/data</value>
</property>
-->
<property>
<name>dfs.replication</name>
<value>3</value>
<description>指定DataNode存储block的副本数量。默认值是3个,我们现在有4个DataNode,该值不大于4即可</description>
</property>
<property>
<name>dfs.blocksize</name>
<value>134217728</value>
<description>
The default block size for new files, in bytes.
You can use the following suffix (case insensitive):
k(kilo), m(mega), g(giga), t(tera), p(peta), e(exa) to specify the size (such as 128k, 512m, 1g, etc.),
Or provide complete size in bytes (such as 134217728 for 128 MB).
注:1.X及以前版本默认是64M,而且配置项名为dfs.block.size
</description>
</property>
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
<description>注:如果还有权限问题,请执行下“/opt/hadoop-2.9.0/bin/hdfs dfs -chmod -R 777 /”命令</description>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
注意:这里可能出现问题:The ratio of reported blocks 1.0000 has reached the threshold 0.9990. Safe mode will be turned off automatically in 27 seconds.
原因:
hadoop默认情况下在安全模式运行。可以通过下面hadoop dfsadmin -safemode 参数,查看相关的状态和设置安全模块是否启用。
enter 进入安全模式
leave 强制NameNode离开安全模式
get 返回安全模式是否开启的信息
wait 等待,一直到安全模式结束。
解决办法有二种:
《1》可能运行命令hadoop dfsadmin -safemode leave 离开安全模式,但是每次都需要手动去设置。
《2》通过配置dfs.safemode.threshold.pct的参数。默认情况下是0.9990f。这个配置可以在hdfs-defalut.xml中找到。我们可以把这个参数配置为0,永久关闭安全模式。
在hadoop中的hdfs-site.xml添加如下配置:
<property>
<name>dfs.safemode.threshold.pct</name>
<value>0f</value>
<description>
Specifies the percentage of blocks that should satisfy
the minimal replication requirement defined by dfs.replication.min.
Values less than or equal to 0 mean not to wait for any particular
percentage of blocks before exiting safemode.
Values greater than 1 will make safe mode permanent.
</description>
</property>
重启NameNode就可以了。
5)mapred-site.xml 修改
cd /opt/hadoop-2.9.0/etc/hadoop
vi mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobtracker.http.address</name>
<value>master:50030</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如 slave1:50030 slave2:50030 slave3:50030 ,拷贝过去后请做相应修改</description>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如 slave1:10020、 slave2:10020、 slave3:10020 ,拷贝过去后请做相应修改</description>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如 slave1:19888、 slave2:19888、 slave3:19888 ,拷贝过去后请做相应修改</description>
</property>
<property>
<name>mapred.job.tracker</name>
<value>http://master:9001</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如 http://slave1:9001 、 http://slave2:9001 、 http://slave3:9001 ,拷贝过去后请做相应修改</description>
</property>
</configuration>
6)yarn-site.xml 修改
cd /opt/hadoop-2.9.0/etc/hadoop
vi yarn-site.xml
<configuration>
<!--
<property>
<name>yarn.resourcemanager.address</name>
<value>master:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>master:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:8035</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>master:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>master:8088</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>master</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
<description>Whether virtual memory limits will be enforced for containers</description>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>4</value>
<description>Ratio between virtual memory to physical memory when setting memory limits for containers</description>
</property>
-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-cluster</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>master</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>slave1</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>master:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>slave1:8088</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>master:2181,slave1:2181,slave2:2181</value>
</property>
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
<description>RM的数据默认存放在ZK上的/rmstore中,可通过yarn.resourcemanager.zk-state-store.parent-path 设定</description>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
<description>开启日志收集,这样会将每台执行任务的机上产生的本地日志文件集中拷贝到HDFS的某个地方,这样就可以在任何一台集群中的机器上集中查看作业日志了</description>
</property>
<property>
<name>yarn.log.server.url</name>
<value>http://master:19888/jobhistory/logs</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如http://slave1:19888/jobhistory/logs、http://slave2:19888/jobhistory/logs、http://slave3:19888/jobhistory/logs,拷贝过去后请做相应修改</description>
</property>
</configuration>
7) slaves 修改
cd /opt/hadoop-2.9./etc/hadoop
vi slaves
[spark@master hadoop]$ more slaves
#localhost
slave1
slave2
slave3
8)配置好后,将配置文件传到其他节点上
scp -r /opt/hadoop-2.9. spark@slave1:/opt/
scp -r /opt/hadoop-2.9. spark@slave2:/opt/
scp -r /opt/hadoop-2.9. spark@slave3:/opt/
分别在slave1,slave2,slave3上修改配置:
修改yarn-site.xml
cd /opt/hadoop-2.9./etc/hadoop
vi yarn-site.xml
修改内容
<property>
<name>yarn.log.server.url</name>
<value>http://master:19888/jobhistory/logs</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如http://slave1:19888/jobhistory/logs、http://slave2:19888/jobhistory/logs、http://slave3:19888/jobhistory/logs,拷
贝过去后请做相应修改</description>
</property>
修改mapred-site.xml
cd /opt/hadoop-2.9.
vi mapred-site.xml
修改内容
<configuration>
<property>
<name>mapreduce.jobtracker.http.address</name>
<value>master:50030</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如 slave1:50030 slave2:50030 slave3:50030 ,拷贝过去后请做相应修改</description>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如 slave1:10020、 slave2:10020、 slave3:10020 ,拷贝过去后请做相应修改</description>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如 slave1:19888、 slave2:19888、 slave3:19888 ,拷贝过去后请做相应修改</description>
</property>
<property>
<name>mapred.job.tracker</name>
<value>http://master:9001</value>
<description>注:每台机器上配置都不一样,需要修改成对应的主机名,端口不用修改,比如 http://slave1:9001 、 http://slave2:9001 、 http://slave3:9001 ,拷贝过去后请做相应修改</description>
</property>
</configuration>
初始化集群,严格按照一下步骤!
1,在3台节点(master,slave1,slave2)启动zookeeper集群,jps查看有没有启动。
cd /opt/zookeeper-3.4./bin
./zkServer.sh start
./zkServer.sh status
master
[spark@master hadoop-2.9.]$ cd /opt/zookeeper-3.4./bin
[spark@master bin]$ ./zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4./bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[spark@master bin]$
[spark@master bin]$ ./zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: follower
slave1
[spark@slave1 hadoop]$ cd /opt/zookeeper-3.4./bin
[spark@slave1 bin]$ ./zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4./bin/../conf/zoo.cfg
./zkServer.sh status
Starting zookeeper ... STARTED
[spark@slave1 bin]$
[spark@slave1 bin]$ ./zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: leader
slave2
[spark@slave2 hadoop]$ cd /opt/zookeeper-3.4./bin
[spark@slave2 bin]$ ./zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4./bin/../conf/zoo.cfg
Starting zookeeper ... ./zkServer.sh status
STARTED
[spark@slave2 bin]$
[spark@slave2 bin]$ ./zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4./bin/../conf/zoo.cfg
Mode: follower
2,在3台节点(master,slave1,slave2)启动journalnode集群,jps查看有没有启动。
cd /opt/hadoop-2.9.
sbin/hadoop-daemon.sh start journalnode
master
[spark@master hadoop]$ cd /opt/hadoop-2.9.
[spark@master hadoop-2.9.]$ sbin/hadoop-deamon.sh start journalnode
starting journalnode, logging to /opt/hadoop-2.9./logs/hadoop-spark-journalnode-master.out
[spark@master hadoop-2.9.]$ jps
Jps
JournalNode
QuorumPeerMain
[spark@master hadoop-2.9.]$
slave1
[spark@slave1 bin]$ cd /opt/hadoop-2.9.
[spark@slave1 hadoop-2.9.]$ sbin/hadoop-daemon.sh start journalnode
starting journalnode, logging to /opt/hadoop-2.9./logs/hadoop-spark-journalnode-slave1.out
[spark@slave1 hadoop-2.9.]$ jps
JournalNode
Jps
QuorumPeerMain
[spark@slave1 hadoop-2.9.]$
slave2
[spark@slave2 bin]$ cd /opt/hadoop-2.9.
[spark@slave2 hadoop-2.9.]$ sbin/hadoop-daemon.sh start journalnode
starting journalnode, logging to /opt/hadoop-2.9./logs/hadoop-spark-journalnode-slave2.out
[spark@slave2 hadoop-2.9.]$ jps
QuorumPeerMain
JournalNode
Jps
[spark@slave2 hadoop-2.9.]$
3,在 master 上格式化hdfs
cd /opt/hadoop-2.9.
bin/hdfs namenode -format #等同 bin/hadoop namenode -format [spark@master HA]$ cd /opt/hadoop-2.9.
[spark@master hadoop-2.9.]$ bin/hdfs namenode -format
// :: INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = master/192.168.0.120
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.9.0
STARTUP_MSG: classpath = /opt/hadoop-2.9.0/etc/hadoop:/opt/hadoop-2.9.0/share/hadoop/common/lib/nimbus-jose-jwt-3.9.jar:/opt/hadoop-2.9.0/share/hadoop/common/li....
STARTUP_MSG: build = https://git-wip-us.apache.org/repos/asf/hadoop.git -r 756ebc8394e473ac25feac05fa493f6d612e6c50; compiled by 'arsuresh' on 2017-11-13T23:15Z
STARTUP_MSG: java = 1.8.0_171
************************************************************/
// :: INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT]
// :: INFO namenode.NameNode: createNameNode [-format]
Formatting using clusterid: CID-01f8ecdf-532b--807e-90b4aa179e29
// :: INFO namenode.FSEditLog: Edit logging is async:true
// :: INFO namenode.FSNamesystem: KeyProvider: null
// :: INFO namenode.FSNamesystem: fsLock is fair: true
// :: INFO namenode.FSNamesystem: Detailed lock hold time metrics enabled: false
// :: INFO namenode.FSNamesystem: fsOwner = spark (auth:SIMPLE)
// :: INFO namenode.FSNamesystem: supergroup = supergroup
// :: INFO namenode.FSNamesystem: isPermissionEnabled = false
// :: INFO namenode.FSNamesystem: Determined nameservice ID: HA
// :: INFO namenode.FSNamesystem: HA Enabled: true
// :: INFO common.Util: dfs.datanode.fileio.profiling.sampling.percentage set to . Disabling file IO profiling
// :: INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit: configured=, counted=, effected=
// :: INFO blockmanagement.DatanodeManager: dfs.namenode.datanode.registration.ip-hostname-check=true
// :: INFO blockmanagement.BlockManager: dfs.namenode.startup.delay.block.deletion.sec is set to :::00.000
// :: INFO blockmanagement.BlockManager: The block deletion will start around Jul ::
// :: INFO util.GSet: Computing capacity for map BlocksMap
// :: INFO util.GSet: VM type = -bit
// :: INFO util.GSet: 2.0% max memory 966.7 MB = 19.3 MB
// :: INFO util.GSet: capacity = ^ = entries
// :: INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false
// :: WARN conf.Configuration: No unit for dfs.namenode.safemode.extension() assuming MILLISECONDS
// :: INFO blockmanagement.BlockManagerSafeMode: dfs.namenode.safemode.threshold-pct = 0.9990000128746033
// :: INFO blockmanagement.BlockManagerSafeMode: dfs.namenode.safemode.min.datanodes =
// :: INFO blockmanagement.BlockManagerSafeMode: dfs.namenode.safemode.extension =
// :: INFO blockmanagement.BlockManager: defaultReplication =
// :: INFO blockmanagement.BlockManager: maxReplication =
// :: INFO blockmanagement.BlockManager: minReplication =
// :: INFO blockmanagement.BlockManager: maxReplicationStreams =
// :: INFO blockmanagement.BlockManager: replicationRecheckInterval =
// :: INFO blockmanagement.BlockManager: encryptDataTransfer = false
// :: INFO blockmanagement.BlockManager: maxNumBlocksToLog =
// :: INFO namenode.FSNamesystem: Append Enabled: true
// :: INFO util.GSet: Computing capacity for map INodeMap
// :: INFO util.GSet: VM type = -bit
// :: INFO util.GSet: 1.0% max memory 966.7 MB = 9.7 MB
// :: INFO util.GSet: capacity = ^ = entries
// :: INFO namenode.FSDirectory: ACLs enabled? false
// :: INFO namenode.FSDirectory: XAttrs enabled? true
// :: INFO namenode.NameNode: Caching file names occurring more than times
// :: INFO snapshot.SnapshotManager: Loaded config captureOpenFiles: falseskipCaptureAccessTimeOnlyChange: false
// :: INFO util.GSet: Computing capacity for map cachedBlocks
// :: INFO util.GSet: VM type = -bit
// :: INFO util.GSet: 0.25% max memory 966.7 MB = 2.4 MB
// :: INFO util.GSet: capacity = ^ = entries
// :: INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.window.num.buckets =
// :: INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.num.users =
// :: INFO metrics.TopMetrics: NNTop conf: dfs.namenode.top.windows.minutes = ,,
// :: INFO namenode.FSNamesystem: Retry cache on namenode is enabled
// :: INFO namenode.FSNamesystem: Retry cache will use 0.03 of total heap and retry cache entry expiry time is millis
// :: INFO util.GSet: Computing capacity for map NameNodeRetryCache
// :: INFO util.GSet: VM type = -bit
// :: INFO util.GSet: 0.029999999329447746% max memory 966.7 MB = 297.0 KB
// :: INFO util.GSet: capacity = ^ = entries
Re-format filesystem in Storage Directory /opt/hadoop-2.9./tmp/dfs/name ? (Y or N) y
Re-format filesystem in QJM to [192.168.0.120:, 192.168.0.121:, 192.168.0.122:] ? (Y or N) y
// :: INFO namenode.FSImage: Allocated new BlockPoolId: BP--192.168.0.120-
// :: INFO common.Storage: Will remove files: [/opt/hadoop-2.9./tmp/dfs/name/current/VERSION, /opt/hadoop-2.9./tmp/dfs/name/current/seen_txid]
// :: INFO common.Storage: Storage directory /opt/hadoop-2.9./tmp/dfs/name has been successfully formatted.
// :: INFO namenode.FSImageFormatProtobuf: Saving image file /opt/hadoop-2.9./tmp/dfs/name/current/fsimage.ckpt_0000000000000000000 using no compression
// :: INFO namenode.FSImageFormatProtobuf: Image file /opt/hadoop-2.9./tmp/dfs/name/current/fsimage.ckpt_0000000000000000000 of size bytes saved in seconds.
// :: INFO namenode.NNStorageRetentionManager: Going to retain images with txid >=
// :: INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at master/192.168.0.120
************************************************************/
4,配置 slave1 上的namenode
先在 master 上启动namenode
cd /opt/hadoop-2.9.
sbin/hadoop-daemon.sh start namenode [spark@master hadoop-2.9.]$ cd /opt/hadoop-2.9.
[spark@master hadoop-2.9.]$ sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /opt/hadoop-2.9./logs/hadoop-spark-namenode-master.out
[spark@master hadoop-2.9.]$ jps
Jps
NameNode
JournalNode
QuorumPeerMain
[spark@master hadoop-2.9.]$
再在 slave1 上执行命令:
cd /opt/hadoop-2.9.
bin/hdfs namenode -bootstrapStandby [spark@slave1 HA]$ cd /opt/hadoop-2.9.
[spark@slave1 hadoop-2.9.]$ bin/hdfs namenode -bootstrapStandby
// :: INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = slave1/192.168.0.121
STARTUP_MSG: args = [-bootstrapStandby]
STARTUP_MSG: version = 2.9.0
STARTUP_MSG: classpath = /opt/hadoop-2.9.0/etc/hadoop:/opt/hadoop-2.9.0/share/hadoop/common/lib...
STARTUP_MSG: build = https://git-wip-us.apache.org/repos/asf/hadoop.git -r 756ebc8394e473ac25feac05fa493f6d612e6c50; compiled by 'arsuresh' on 2017-11-13T23:15Z
STARTUP_MSG: java = 1.8.0_171
************************************************************/
// :: INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT]
// :: INFO namenode.NameNode: createNameNode [-bootstrapStandby]
=====================================================
About to bootstrap Standby ID nn2 from:
Nameservice ID: HA
Other Namenode ID: nn1
Other NN's HTTP address: http://master:50070
Other NN's IPC address: master/192.168.0.120:9000
Namespace ID:
Block pool ID: BP--192.168.0.120-
Cluster ID: CID-01f8ecdf-532b--807e-90b4aa179e29
Layout version: -
isUpgradeFinalized: true
=====================================================
// :: INFO common.Storage: Storage directory /opt/hadoop-2.9./tmp/dfs/name has been successfully formatted.
// :: INFO namenode.FSEditLog: Edit logging is async:true
// :: INFO namenode.TransferFsImage: Opening connection to http://master:50070/imagetransfer?getimage=1&txid=0&storageInfo=-63:1875840257:1530455179314:CID-01f8ecdf-532b-4415-807e-90b4aa179e29&bootstrapstandby=true
// :: INFO namenode.TransferFsImage: Image Transfer timeout configured to milliseconds
// :: INFO namenode.TransferFsImage: Combined time for fsimage download and fsync to all disks took .02s. The fsimage download took .01s at 0.00 KB/s. Synchronous (fsync) write to disk of /opt/hadoop-2.9./tmp/dfs/name/current/fsimage.ckpt_0000000000000000000 took .00s.
// :: INFO namenode.TransferFsImage: Downloaded file fsimage.ckpt_0000000000000000000 size bytes.
// :: INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at slave1/192.168.0.121
************************************************************/
5,格式化ZKFC(在 master 上执行一次即可)
cd /opt/hadoop-2.9.
bin/hdfs zkfc -formatZK [spark@master hadoop-2.9.]$ cd /opt/hadoop-2.9.
[spark@master hadoop-2.9.]$ bin/hdfs zkfc -formatZK
// :: INFO tools.DFSZKFailoverController: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting DFSZKFailoverController
STARTUP_MSG: host = master/192.168.0.120
STARTUP_MSG: args = [-formatZK]
STARTUP_MSG: version = 2.9.0
STARTUP_MSG: classpath = /opt/hadoop-2.9.0/etc/hadoop:/opt/hadoop-2.9.0/share/hadoop/common/lib/nimbus-jose-jwt-3.9.jar:/opt/hadoop-2.9.0/share/hadoop/common/lib/java-xmlbuilder-0.4.jar....
STARTUP_MSG: build = https://git-wip-us.apache.org/repos/asf/hadoop.git -r 756ebc8394e473ac25feac05fa493f6d612e6c50; compiled by 'arsuresh' on 2017-11-13T23:15Z
STARTUP_MSG: java = 1.8.0_171
************************************************************/
// :: INFO tools.DFSZKFailoverController: registered UNIX signal handlers for [TERM, HUP, INT]
// :: INFO tools.DFSZKFailoverController: Failover controller configured for NameNode NameNode at master/192.168.0.120:
// :: INFO zookeeper.ZooKeeper: Client environment:zookeeper.version=3.4.-, built on // : GMT
// :: INFO zookeeper.ZooKeeper: Client environment:host.name=master
// :: INFO zookeeper.ZooKeeper: Client environment:java.version=1.8.0_171
// :: INFO zookeeper.ZooKeeper: Client environment:java.vendor=Oracle Corporation
// :: INFO zookeeper.ZooKeeper: Client environment:java.home=/opt/jdk1..0_171/jre
// :: INFO zookeeper.ZooKeeper: Client environment:java.class.path=/opt/hadoop-2.9./etc/hadoop:/opt/hadoop-2.9./share/hadoop/common/lib/nimbu.....
// :: INFO zookeeper.ZooKeeper: Client environment:java.library.path=/opt/hadoop-2.9./lib/native
// :: INFO zookeeper.ZooKeeper: Client environment:java.io.tmpdir=/tmp
// :: INFO zookeeper.ZooKeeper: Client environment:java.compiler=<NA>
// :: INFO zookeeper.ZooKeeper: Client environment:os.name=Linux
// :: INFO zookeeper.ZooKeeper: Client environment:os.arch=amd64
// :: INFO zookeeper.ZooKeeper: Client environment:os.version=3.10.-.el7.x86_64
// :: INFO zookeeper.ZooKeeper: Client environment:user.name=spark
// :: INFO zookeeper.ZooKeeper: Client environment:user.home=/home/spark
// :: INFO zookeeper.ZooKeeper: Client environment:user.dir=/opt/hadoop-2.9.
// :: INFO zookeeper.ZooKeeper: Initiating client connection, connectString=master:,slave1:,slave2: sessionTimeout= watcher=org.apache.hadoop.ha.ActiveStandbyElector$WatcherWithClientRef@6ca8564a
// :: INFO zookeeper.ClientCnxn: Opening socket connection to server master/192.168.0.120:. Will not attempt to authenticate using SASL (unknown error)
// :: INFO zookeeper.ClientCnxn: Socket connection established to master/192.168.0.120:, initiating session
// :: INFO zookeeper.ClientCnxn: Session establishment complete on server master/192.168.0.120:, sessionid = 0x100006501250000, negotiated timeout =
// :: INFO ha.ActiveStandbyElector: Successfully created /hadoop-ha/HA in ZK.
// :: INFO zookeeper.ZooKeeper: Session: 0x100006501250000 closed
// :: WARN ha.ActiveStandbyElector: Ignoring stale result from old client with sessionId 0x100006501250000
// :: INFO zookeeper.ClientCnxn: EventThread shut down
// :: INFO tools.DFSZKFailoverController: SHUTDOWN_MSG:
/************************************************************
现在可以启动集群啦
1,首先启动zookeeper(在master,slave1,slave2)
cd /opt/zookeeper-3.4./bin
./zkServer.sh start
2,在master上启动hdfs和yarn
cd /opt/hadoop-2.9. sbin/start-dfs.sh
sbin/start-yarn.sh
[spark@master sbin]$ cd /opt/hadoop-2.9.
[spark@master hadoop-2.9.]$ sbin/start-dfs.sh
sbin/start-yarn.shStarting namenodes on [master slave1]
slave1: starting namenode, logging to /opt/hadoop-2.9./logs/hadoop-spark-namenode-slave1.out
master: namenode running as process . Stop it first.
slave3: starting datanode, logging to /opt/hadoop-2.9./logs/hadoop-spark-datanode-slave3.out
slave2: starting datanode, logging to /opt/hadoop-2.9./logs/hadoop-spark-datanode-slave2.out
slave1: starting datanode, logging to /opt/hadoop-2.9./logs/hadoop-spark-datanode-slave1.out
Starting journal nodes [master slave1 slave2]
slave2: journalnode running as process . Stop it first. # 前边我们已经启动过了,是手动启动的。
master: journalnode running as process . Stop it first. # 前边我们已经启动过了,是手动启动的。
slave1: journalnode running as process . Stop it first. # 前边我们已经启动过了,是手动启动的。
Starting ZK Failover Controllers on NN hosts [master slave1]
master: starting zkfc, logging to /opt/hadoop-2.9./logs/hadoop-spark-zkfc-master.out
slave1: starting zkfc, logging to /opt/hadoop-2.9./logs/hadoop-spark-zkfc-slave1.out
[spark@master hadoop-2.9.]$ sbin/start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /opt/hadoop-2.9./logs/yarn-spark-resourcemanager-master.out
slave1: starting nodemanager, logging to /opt/hadoop-2.9./logs/yarn-spark-nodemanager-slave1.out
slave2: starting nodemanager, logging to /opt/hadoop-2.9./logs/yarn-spark-nodemanager-slave2.out
slave3: starting nodemanager, logging to /opt/hadoop-2.9./logs/yarn-spark-nodemanager-slave3.out
[spark@master hadoop-2.9.]$ jps
DFSZKFailoverController
NameNode
ResourceManager
Jps
JournalNode
QuorumPeerMain
[spark@master hadoop-2.9.]$
3,slave1 上的resourcemanager需要手动启动
cd /opt/hadoop-2.9.
sbin/yarn-deamon.sh start resourcemanager [spark@slave1 hadoop-2.9.]$ jps
JournalNode
DataNode
NodeManager
Jps
DFSZKFailoverController
QuorumPeerMain
NameNode
[spark@slave1 sbin]$ cd /opt/hadoop-2.9.
[spark@slave1 hadoop-2.9.]$ cd sbin/
[spark@slave1 sbin]$ ls
distribute-exclude.sh hadoop-daemons.sh httpfs.sh refresh-namenodes.sh start-all.sh start-dfs.sh start-yarn.sh stop-balancer.sh stop-secure-dns.sh yarn-daemon.sh
FederationStateStore hdfs-config.cmd kms.sh slaves.sh start-balancer.sh start-secure-dns.sh stop-all.cmd stop-dfs.cmd stop-yarn.cmd yarn-daemons.sh
hadoop-daemon.sh hdfs-config.sh mr-jobhistory-daemon.sh start-all.cmd start-dfs.cmd start-yarn.cmd stop-all.sh stop-dfs.sh stop-yarn.sh
[spark@slave1 sbin]$ ./yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /opt/hadoop-2.9./logs/yarn-spark-resourcemanager-slave1.out
[spark@slave1 sbin]$ jps
ResourceManager
JournalNode
DataNode
Jps
NodeManager
DFSZKFailoverController
QuorumPeerMain
NameNode
[spark@slave1 sbin]$
此时slave2
[spark@slave2 HA]$ jps
DataNode
Jps
NodeManager
QuorumPeerMain
JournalNode
[spark@slave2 HA]$
此时slave3
[spark@slave3 hadoop-2.9.]$ jps
Jps
NodeManager
DataNode
[spark@slave3 hadoop-2.9.]$
至此,高可用hadoop配置完毕,可访问浏览器:
http://192.168.0.120:50070 //namenode active
http://192.168.0.121:50070 //namenode standby
http://192.168.0.120:8088 //resourcemanager active
http://192.168.0.121:8088 //resourcemanager standby
此时 http://192.168.0.120:50070/可以访问(显示为: 'master:9000' (active)),http://192.168.0.121:50070/可以访问(显示为: 'slave1:9000' (standby))
此时 http://192.168.0.121:8088/ 不可以访问,而http://192.168.0.120:8088/ 可以访问。
关闭的时候按相反的顺序关闭
高可用验证
1,验证hdfs
首先kill掉 master 上active的namenode
kill -9 <pid of NN>
[spark@master hadoop-2.9.]$ jps
DFSZKFailoverController
NameNode
ResourceManager
JournalNode
QuorumPeerMain
Jps
[spark@master hadoop-2.9.]$ kill -
[spark@master hadoop-2.9.]$ jps
DFSZKFailoverController
ResourceManager
Jps
JournalNode
QuorumPeerMain
[spark@master hadoop-2.9.]$
然后查看 slave1 上状态为standby的namenode状态变成active。
此时 slave1 jps
[spark@slave1 sbin]$ jps
ResourceManager
Jps
JournalNode
DataNode
NodeManager
DFSZKFailoverController
QuorumPeerMain
NameNode
[spark@slave1 sbin]$
此时 http://192.168.0.120:50070/ 不可以访问,http://192.168.0.121:50070/可以访问(显示为: 'slave1:9000' (active))
此时 http://192.168.0.121:8088/ 不可以访问,而http://192.168.0.120:8088/ 可以访问。
2,验证yarn
同上,kill掉active状态的rm后,standby状态下的rm即变成active,继续工作。
[spark@master hadoop-2.9.]$ jps
DFSZKFailoverController
Jps
ResourceManager
JournalNode
QuorumPeerMain
[spark@master hadoop-2.9.]$ kill -
[spark@master hadoop-2.9.]$ jps
DFSZKFailoverController
JournalNode
QuorumPeerMain
Jps
此时 http://192.168.0.121:8088/ 可以访问,而http://192.168.0.120:8088/ 不可以访问。
http://192.168.0.120:50070/dfshealth.html#tab-overview
http://192.168.0.121:50070/dfshealth.html#tab-overview
http://192.168.0.120:8088/cluster/apps/RUNNING
http://192.168.0.121:8088/cluster/apps/ACCEPTED
参考《https://www.cnblogs.com/jiangzhengjun/p/6347916.html》
《https://blog.csdn.net/qq_32166627/article/details/51553394》
Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA的更多相关文章
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十一)NIFI1.7.1安装
一.nifi基本配置 1. 修改各节点主机名,修改/etc/hosts文件内容. 192.168.0.120 master 192.168.0.121 slave1 192.168.0.122 sla ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)
异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十二)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网。
Centos7出现异常:Failed to start LSB: Bring up/down networking. 按照<Kafka:ZK+Kafka+Spark Streaming集群环境搭 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十一)定制一个arvo格式文件发送到kafka的topic,通过Structured Streaming读取kafka的数据
将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(九)安装kafka_2.11-1.1.0
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(八)安装zookeeper-3.4.12
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(三)安装spark2.2.1
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二)安装hadoop2.9.0
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(七)针对hadoop2.9.0启动DataManager失败问题
DataManager启动失败 启动过程中发现一个问题:slave1,slave2,slave3都是只启动了DataNode,而DataManager并没有启动: [spark@slave1 hado ...
随机推荐
- vs 2010 :类型化数据集DataSet应用
1.启动服务器资源管理器,建立数据库连接 2.在项目中创建数据集 3.为数据集添加表对象 4.为表适配器tableAdapter添加参数化查询 5.修改表适配器的主查询,或添加其他查询 Update: ...
- Linux命令中,$、#、@、0、1、2、*、?的作用
$# 是传给脚本的参数个数 $0 是脚本本身的名字 $1 是传递给该shell脚本的第一个参数 $2 是传递给该shell脚本的第二个参数 $@ 是传给脚本的所有参数的列表 $* 是以 ...
- Mac安装jdk1.6
需到apple官网下载 下载地址:https://support.apple.com/kb/DL1572?viewlocale=en_US&locale=en_US 相关介绍: http:// ...
- 精益软件研发的秘密 IT大咖说 - 大咖干货,不再错过
精益软件研发的秘密 IT大咖说 - 大咖干货,不再错过 http://www.itdks.com/dakashuo/new/dakalive/detail/3662
- Either, neither, both
http://speakspeak.com/resources/english-grammar-rules/various-grammar-rules/either-neither-both One ...
- python实例[判断操作系统类型]
参考文献:http://bbs.chinaunix.net/thread-1848086-1-1.html 经常地我们需要编写跨平台的脚本,但是由于不同的平台的差异性,我们不得不获得当前所工作的平台( ...
- JavaScript进阶系列04,函数参数个数不确定情况下的解决方案
本篇主要体验函数参数个数不确定情况下的一个解决方案.先来看一段使用函数作为参数进行计算的实例. var calculate = function(x, y, fn) { return fn(x, y) ...
- Android 数据存储02之文件读写
Android文件读写 版本 修改内容 日期 修改人 V1.0 原始版本 2013/2/25 skywang Android文件读写的有两种方式.一种,是通过标准的JavaIO库去读写.另一种,是通过 ...
- 【java】ThreadLocal线程变量的实现原理和使用场景
一.ThreadLocal线程变量的实现原理 1.ThreadLocal核心方法有这个几个 get().set(value).remove() 2.实现原理 ThreadLocal在每个线程都会创建一 ...
- DotNetty的通道处理细节
第一,客户端如何向服务器主动发送消息: 第二,服务器如何向指定客户端发送消息: 第三,在哪里做报文的拆包和组包. public partial class FrmMain : Form { publi ...