1.最小二乘拟合

实例1

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq plt.figure(figsize=(9,9))
x=np.linspace(0,10,1000)
X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78])
Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05])
#计算以p为参数的直线和原始数据之间的误差
def f(p):
k, b = p
return(Y-(k*X+b))
#leastsq使得f的输出数组的平方和最小,参数初始值为[1,0]
r = leastsq(f, [1,0])
k, b = r[0]
print("k=",k,"b=",b) plt.scatter(X,Y, s=100, alpha=1.0, marker='o',label=u'数据点') y=k*x+b ax = plt.gca() #gca获取轴这个对象 ax.set_xlabel(..., fontsize=20)
ax.set_ylabel(..., fontsize=20)
#设置坐标轴标签字体大小 plt.plot(x, y, color='r',linewidth=5, linestyle=":",markersize=20, label=u'拟合曲线') plt.legend(loc=0, numpoints=1)
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize='xx-large') plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V') plt.xlim(0, x.max() * 1.1)
plt.ylim(0, y.max() * 1.1) plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
#刻度字体大小 plt.legend(loc='upper left') plt.show()

实例2

#最小二乘拟合实例
import numpy as np
from scipy.optimize import leastsq
import pylab as pl def func(x, p):
"""
数据拟合所用的函数: A*cos(2*pi*k*x + theta)
"""
A, k, theta = p
return A*np.sin(k*x+theta) def residuals(p, y, x):
"""
实验数据x, y和拟合函数之间的差,p为拟合需要找到的系数
"""
return y - func(x, p) x = np.linspace(0, 20, 100)
A, k, theta = 10, 3, 6 # 真实数据的函数参数
y0 = func(x, [A, k, theta]) # 真实数据
y1 = y0 + 2 * np.random.randn(len(x)) # 加入噪声之后的实验数据 p0 = [10, 0.2, 0] # 第一次猜测的函数拟合参数 # 调用leastsq进行数据拟合
# residuals为计算误差的函数
# p0为拟合参数的初始值
# args为需要拟合的实验数据
plsq = leastsq(residuals, p0, args=(y1, x)) print (u"真实参数:", [A, k, theta] )
print (u"拟合参数", plsq[0]) # 实验数据拟合后的参数 pl.plot(x, y0, color='r',label=u"真实数据")
pl.plot(x, y1, color='b',label=u"带噪声的实验数据")
pl.plot(x, func(x, plsq[0]), color='g', label=u"拟合数据")
pl.legend()
pl.show()

2. 插值

# -*- coding: utf-8 -*-
"""
Created on Thu Jul 27 16:42:30 2017 @author: Dell
"""
import numpy as np
import pylab as pl
from scipy import interpolate
import matplotlib.pyplot as plt x = np.linspace(0, 2*np.pi+np.pi/4, 10)
y = np.sin(x) x_new = np.linspace(0, 2*np.pi+np.pi/4, 100)
f_linear = interpolate.interp1d(x, y)
tck = interpolate.splrep(x, y)
y_bspline = interpolate.splev(x_new, tck) plt.xlabel(u'安培/A')
plt.ylabel(u'伏特/V') plt.plot(x, y, "o", label=u"原始数据")
plt.plot(x_new, f_linear(x_new), label=u"线性插值")
plt.plot(x_new, y_bspline, label=u"B-spline插值") pl.legend()
pl.show()

实例分析

# -*- coding: utf-8 -*-
"""
Created on Thu Jul 27 16:53:21 2017 @author: Dell
""" import numpy as np
from scipy import interpolate
import pylab as pl
#创建数据点集并绘制
pl.figure(figsize=(12,9))
x = np.linspace(0, 10, 11)
y = np.sin(x)
ax=pl.plot() pl.plot(x,y,'ro')
#建立插值数据点
xnew = np.linspace(0, 10, 101)
for kind in ['nearest', 'zero','linear','quadratic']:
#根据kind创建插值对象interp1d
f = interpolate.interp1d(x, y, kind = kind)
ynew = f(xnew)#计算插值结果
pl.plot(xnew, ynew, label = str(kind)) pl.xticks(fontsize=20)
pl.yticks(fontsize=20) pl.legend(loc = 'lower right')
pl.show()

B样条曲线插值
一维数据的插值运算可以通过 interp1d()实现。
其调用形式为:
Interp1d可以计算x的取值范围之内任意点的函数值,并返回新的数组。
interp1d(x, y, kind=‘linear’, …)
参数 x和y是一系列已知的数据点
参数kind是插值类型,可以是字符串或整数

B样条曲线插值
Kind给出了B样条曲线的阶数:
 ‘
zero‘ ‘nearest’ :0阶梯插值,相当于0阶B样条曲线
 ‘slinear’‘linear’ :线性插值,相当于1阶B样条曲线
 ‘quadratic’‘cubic’:2阶和3阶B样条曲线,更高阶的曲线可以直接使用整数值来指定

(1)#创建数据点集:

import numpy as np

x = np.linspace(0, 10, 11)

y = np.sin(x)

(2)#绘制数据点集:

import pylab as pl

pl.plot(x,y,'ro')

创建interp1d对象f、计算插值结果:
xnew = np.linspace(0, 10, 11)
from scipy import interpolate
f = interpolate.interp1d(x, y, kind = kind)
ynew = f(xnew)

根据kind类型创建interp1d对象f、计算并绘制插值结果:
xnew = np.linspace(0, 10, 11)
for kind in ['nearest', 'zero','linear','quadratic']:
#根据kind创建插值对象interp1d
f = interpolate.interp1d(x, y, kind = kind)
ynew = f(xnew)#计算插值结果
pl.plot(xnew, ynew, label = str(kind))#绘制插值结果

如果我们将代码稍作修改增加一个5阶插值

# -*- coding: utf-8 -*-
"""
Created on Thu Jul 27 16:53:21 2017 @author: Dell
""" import numpy as np
from scipy import interpolate
import pylab as pl
#创建数据点集并绘制
pl.figure(figsize=(12,9))
x = np.linspace(0, 10, 11)
y = np.sin(x)
ax=pl.plot() pl.plot(x,y,'ro')
#建立插值数据点
xnew = np.linspace(0, 10, 101)
for kind in ['nearest', 'zero','linear','quadratic',5]:
#根据kind创建插值对象interp1d
f = interpolate.interp1d(x, y, kind = kind)
ynew = f(xnew)#计算插值结果
pl.plot(xnew, ynew, label = str(kind)) pl.xticks(fontsize=20)
pl.yticks(fontsize=20) pl.legend(loc = 'lower right')
pl.show()
运行得到

发现5阶已经很接近正弦曲线,但是如果x值选取范围较大,则会出现跳跃。

关于拟合与插值的数学基础可参见霍开拓:拟合与插值的区别?

左边插值,右边拟合

仔细看有啥不一样

插值曲线要过数据点,拟合曲线整体效果更好。

插值,对准了才可以插吗,那就一定得过数据点。拟合,就是要得到最接近的结果,是要看总体效果。

既然理想(思路)不一样,那么三观和行为(特点和策略)也就不一样啦。

插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。

所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λn), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。
从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个( 或几个分片光滑的)连续曲面来穿过这些点。

插值法

以下引自某科

Lagrange插值
Lagrange插值是n次多项式插值,其成功地用构造插值基函数的 方法解决了求n次多项式插值函数问题。
★基本思想 将待求的n次多项式插值函数pn(x)改写成另一种表示方式,再利用插值条件⑴确定其中的待定函数,从而求出插值多项式。
Newton插值
Newton插值也是n次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。
★基本思想 将待求的n次插值多项式Pn(x)改写为具有承袭性的形式,然后利用插值条件⑴确定Pn(x)的待定系数,以求出所要的插值函数。
Hermite插值
Hermite插值是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的,其提法为:给定n+1个互异的节点x0,x1,……,xn上的函数值和导数值求一个2n+1次多项式H2n+1(x)满足插值条件H2n+1(xk)=ykH'2n+1(xk)=y'k k=0,1,2,……,n ⒀如上求出的H2n+1(x)称为2n+1次Hermite插值函数,它与被插函数一般有更好的密合度.
★基本思想利用Lagrange插值函数的构造方法,先设定函数形式,再利用插值条件⒀求出插值函数.

貌似插值节点取的越多,差值曲线或曲面越接近原始曲线/曲面,因为采样多嘛。但事实总是不像广大人民群众想的那样,随着插值节点的增多,多项式次数也在增高,插值曲线在一些区域出现跳跃,并且越来越偏离原始曲线。这个现象被 Tolmé Runge 发现并解释,然后就以他的名字命名这种现象。It was discovered by Carl David Tolmé Runge (1901) when exploring the behavior of errors when using polynomial interpolation to approximate certain functions.

为了解决这个问题,人们发明了分段插值法。分段插值一般不会使用四次以上的多项式,而二次多项式会出现尖点,也是有问题的。所以就剩下线性和三次插值,最后使用最多的还是线性分段插值,这个好处是显而易见的。

拟合

最小二乘

如何找到最接近原始曲线或者数据点的拟合曲线,这不是一件容易操作的事。要想整体最接近,直接的想法就是拟合曲线的每一点到原始曲线的对应点的最接近,简单点说就是两曲线上所有点的函数值之差的绝对值之和最小。看似解决问题,但绝对值在数学上向来是个不好交流的语言障碍患者,那然后又该怎么办。数学家说了既然办不了你绝对值之和,那就办了你家亲戚,就看你平方之和长得像。于是就找了这个长得像的来背黑锅,大家都表示很和谐。然后给这种操作冠之名曰'最小二乘法'。

官方一点的表述 , 选择参数c使得拟合模型与实际观测值在曲线拟合各点的残差(或离差)ek=yk-f(xk,c)的加权平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线,这种方法叫做最小二乘法。

原文链接:https://zhuanlan.zhihu.com/p/28149195

转Python SciPy库——拟合与插值的更多相关文章

  1. Python SciPy库——插值与拟合

    插值与拟合 原文链接:https://zhuanlan.zhihu.com/p/28149195 1.最小二乘拟合 实例1 # -*- coding: utf-8 -*- import numpy a ...

  2. python scipy库

    三.假定正态分布,求解1倍标准差和0.5倍标准差的概率? 二.求解多元线性或非线性方程组解 一.求解3元一次方程 1.学习资料  https://github.com/lijin-THU/notes- ...

  3. [笔记]我的Linux入门之路 - 05.Eclipse的Python开发环境搭建与Numpy、Scipy库安装

    一.Python环境 直接终端查询下python安装没:python --version Python 2.7.12 Ubuntu竟然已经装了Python2.7,那就好说了.不然自己装和装jdk差不多 ...

  4. Python数模笔记-Scipy库(1)线性规划问题

    1.最优化问题建模 最优化问题的三要素是决策变量.目标函数和约束条件. (1)分析影响结果的因素是什么,确定决策变量 (2)决策变量与优化目标的关系是什么,确定目标函数 (3)决策变量所受的限制条件是 ...

  5. 第4天:scipy库

    一.SciPy库概述 1.numpy提供向量和矩阵的相关操作,高级计算器 2.SciPy在统计.优化.插值.数值积分.视频转换等,涵盖基础科学计算相关问题. (额,对统计和概率,数理完全一窍不通) 3 ...

  6. python第三方库,你要的这里都有

    Python的第三方库多的超出我的想象. python 第三方模块 转 https://github.com/masterpy/zwpy_lst   Chardet,字符编码探测器,可以自动检测文本. ...

  7. python常用库(转)

    转自http://www.west999.com/info/html/wangluobiancheng/qita/20180729/4410114.html Python常用的库简单介绍一下 fuzz ...

  8. Python全部库整理

    库名称简介 Chardet字符编码探测器,可以自动检测文本.网页.xml的编码. colorama主要用来给文本添加各种颜色,并且非常简单易用. Prettytable主要用于在终端或浏览器端构建格式 ...

  9. python的库有多少个?python有多少个模块?

    这里列举了大概500个左右的库: !   Chardet字符编码探测器,可以自动检测文本.网页.xml的编码. colorama主要用来给文本添加各种颜色,并且非常简单易用. Prettytable主 ...

随机推荐

  1. ubuntu 的chmod 和 chown

    1.chown改文件或目录的所有者和群组权限 格式 chown [OPTION]... [OWNER][:[GROUP]] FILE... 参数: -R 递归操作当前目录下的所有目录和文件: -h 更 ...

  2. BarTender怎么打印公式化的三列标签

    有小伙伴在业务上有这样的需求:使用BarTender打印一行三列的标签,如下A,B,C三个并排.第一行 A1=a B1=a*2-1 C1=a*2:第二行 A2=a+1 B2=(a+1)*2-1 C2= ...

  3. Google语音识别API 使用方法

    官方位置:https://cloud.google.com/speech/

  4. Two FIFOs of length 253 with 8-bits

    FIFO 先入先出队列(First Input First Output,FIFO) 可以实现数据缓存. 一.FIFO的一些重要参数: 1.length:未知,待查 //补充:学长说:“FIFO一般只 ...

  5. vue中使用动态echart图表

    <template> <div class="block"> <div class="title">展会实时人流里统计< ...

  6. CMD打开模拟器

    CMD-> CD d:\android\android-sdk-151\tools-> (这里的路径是你emulator.exe所在的路径) emulator -avd avdname-& ...

  7. [Python] First-class Everything (Python缔造者Guido van Rossum关于bound/unbound method的来历叙述)

    First-class Everything -- Guido van Rossum First-class object: 第一类对象.意指可在执行期创建并作为参数传递给其他函数或存入一个变量的对象 ...

  8. 51开发环境的搭建--KeilC51的安装及工程的创建

    学习单片机的开发,单靠书本的知识是远远不够的,必须实际操作编程才能领会书中的知识点,起到融会贯通的效果.51单片机作为入门级的单片机--上手容易.网上资源丰富.单片机稳定性及资源比较丰富.通过串口即可 ...

  9. vmp3.0.9全保护拆分解析

    https://mp.weixin.qq.com/s/WO6w_L-cYwH5KB2rilZdag 以下为了避免插件干扰,故采用x64dbg原版进行分析. 首先我通过检测到调试器的弹窗进行栈回溯,定位 ...

  10. <转>Python: __init__.py 用法

    转自 http://www.cnblogs.com/BeginMan/p/3183629.html python的每个模块的包中,都有一个__init__.py文件,有了这个文件,我们才能导入这个目录 ...