One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M≤ 100,000) unidirectional
(one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 

Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai,Bi, and Ti. The described road runs from farm Ai to farm Bi,
requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

单向图 问牛去和回最短距离之和最大的

回来的好弄 直接最短路就行了

去时候的就把图反过来就行了

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f using namespace std; int n, m, x;
int graph[1005][1005];
bool vis[1005];
int dis1[1005], dis2[1005]; void dijkstra(int sec, int dis[])
{
memset(vis, false, sizeof(vis));
for(int i = 1; i <= n; i++){
dis[i] = graph[sec][i];
}
vis[sec] = true;
dis[sec] = 0;
for(int i = 1; i < n; i++){
int min = inf, min_num;
for(int j = 1; j <= n; j++){
if(!vis[j] && dis[j] < min){
min = dis[j];
min_num = j;
}
}
vis[min_num] = true;
for(int j = 1; j <= n; j++){
if(dis[j] > min + graph[min_num][j]){
dis[j] = min + graph[min_num][j];
}
}
}
} int main()
{
while(cin>>n>>m>>x){
memset(graph, inf, sizeof(graph));
for(int i = 0; i < m; i++){
int f, t, w;
cin>>f>>t>>w;
graph[f][t] = w;
}
dijkstra(x, dis1);
for(int i = 1; i <= n; i++){
for(int j = i; j <= n; j++){
swap(graph[i][j], graph[j][i]);
}
}
dijkstra(x, dis2); int ans = -1;
for(int i = 1; i <= n; i++){
ans = max(ans, dis1[i] + dis2[i]);
}
cout<<ans<<endl; } return 0;
}

POJ3268 Silver Cow Party【最短路】的更多相关文章

  1. POJ3268 Silver Cow Party —— 最短路

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  2. POJ3268 Silver Cow Party(dijkstra+矩阵转置)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15156   Accepted: 6843 ...

  3. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  4. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  5. poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13611   Accepted: 6138 ...

  6. POJ3268 Silver Cow Party Dijkstra最短路

    Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to atten ...

  7. poj3268 Silver Cow Party(最短路)

    非常感谢kuangbin专题啊,这道题一开始模拟邻接表做的,反向边不好处理,邻接矩阵的话舒服多了. 题意:给n头牛和m条有向边,每头牛1~n编号,求所有牛中到x编号去的最短路+回来的最短路的最大值. ...

  8. poj3268 Silver Cow Party (SPFA求最短路)

    其实还是从一个x点出发到所有点的最短路问题.来和回只需分别处理一下逆图和原图,两次SPFA就行了. #include<iostream> #include<cstdio> #i ...

  9. (poj)3268 Silver Cow Party 最短路

    Description One cow ≤ N ≤ ) conveniently numbered ..N ≤ X ≤ N). A total of M ( ≤ M ≤ ,) unidirection ...

随机推荐

  1. 一个非常好的C#字符串操作处理类StringHelper.cs

    /// <summary> /// 类说明:Assistant /// 编 码 人:苏飞 /// 联系方式:361983679 /// 更新网站:http://www.sufeinet.c ...

  2. 10 -- 深入使用Spring -- 5...1 使用Quartz

    10.5.1 使用Quartz JDK为简单的任务调度提供了Timer支持. Quartz是一个任务调度框架.借助于Cron表达式,Quartz可以支持各种复杂的任务调度. 1.下载和安装Quartz ...

  3. Extjs定义的Fckeditor控件

    Ext.namespace('CRM.Panels'); //Ext.BoxComponent 这里继承是参考的Ext.form.Field CRM.Panels.Fckeditor = Ext.ex ...

  4. MvvmLight学习篇—— Mvvm Light Toolkit for wpf/silverlight系列(导航)

    系列一:看的迷迷糊糊的 一.Mvvm Light Toolkit for wpf/silverlight系列之准备工作 二.Mvvm Light Toolkit for wpf/silverlight ...

  5. cocos2dx 优化略记

    缓存cache: 预加载资源到内存, 可以异步加载.  直接使用sprite:create()来加载资源的话,  有时候会发现,  在第一次运行动作的时候会变的很卡.  那是因为第一次要加载资源到内存 ...

  6. iOS UTI(统一类型标识)

    同一类型标识符(Uniform Type Identifier,UTI)代表IOS信息共享的中心组件.可以把它看成下一代的MIME类型.UTI是标识资源类型(比如图像和文本)的字符串,他们制定哪些类型 ...

  7. Nginx SSL配置

    一.SSL 原理 ① 客户端( 浏览器 )发送一个 https 请求给服务器② 服务器要有一套证书,其实就是公钥和私钥,这套证书可以自己生成,也可以向组织申请,服务器会把公钥传输给客户端③ 客户端收到 ...

  8. drawCall_01

    在屏幕上渲染物体,引擎需要发出一个绘制调用来访问图形API(iOS系统中为OpenGL ES).每个绘制调用需要进行大量的工作来访问图形API,从而导致了CPU方面显著的性能开销.   Unity在运 ...

  9. Hadoop集群三种作业调度算法介绍

    Hadoop集群中有三种作业调度算法,分别为FIFO,公平调度算法和计算能力调度算法 先来先服务(FIFO) Hadoop中默认的调度器FIFO,它先按照作业的优先级高低,再按照到达时间的先后选择被执 ...

  10. java里面的getAttribute和findAttribute的区别

    findAttribute: abstract Object findAttribute(String name) Searches for the named attribute in page, ...