Farmer John has noticed that the quality of milk given by his cows varies from day to day. On further investigation, he discovered that although he can't predict the quality of milk from one day to the next, there are some regular patterns in the daily milk quality.

To perform a rigorous study, he has invented a complex classification scheme by which each milk sample is recorded as an integer between 0 and 1,000,000 inclusive, and has recorded data from a single cow over N (1 ≤ N ≤ 20,000) days. He wishes to find the longest pattern of samples which repeats identically at least K (2 ≤ K ≤ N) times. This may include overlapping patterns -- 1 2 3 2 3 2 3 1 repeats 2 3 2 3 twice, for example.

Help Farmer John by finding the longest repeating subsequence in the sequence of samples. It is guaranteed that at least one subsequence is repeated at least K times.

Input

Line 1: Two space-separated integers: N and K 
Lines 2.. N+1: N integers, one per line, the quality of the milk on day i appears on the ith line.

Output

Line 1: One integer, the length of the longest pattern which occurs at least K times

Sample Input

8 2
1
2
3
2
3
2
3
1

Sample Output

4

题意:

找一个最长的子串,他在原字符串中出现的次数至少k次。允许重叠。

思路:

二分枚举答案。对某一段i~j,如果height[i~j]都超过了mid,说明可以有一个长度为mid的串在这些后缀中都有出现过。也就是说这个串出现了j - i次,统计这个次数,如果超过k,st = mid + 1

感觉应该hash也能做?没写过。【嗯不行不行,仔细想了一下hash好像要n方】

 #include <iostream>
#include <set>
#include <cmath>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
using namespace std;
typedef long long LL;
#define inf 0x7f7f7f7f const int maxn = 1e6 + ;
int n, k;
char str[maxn]; int sa[maxn];
int t1[maxn], t2[maxn], c[maxn];
LL rnk[maxn], height[maxn];
int cnt[maxn]; void build_sa(int s[], int n, int m)
{
int i, j, p, *x = t1, *y = t2;
for(i = ; i < m; i++)c[i] = ;
for(i = ; i < n; i++)c[x[i] = s[i]]++;
for(i = ; i < m; i++)c[i] += c[i - ];
for(i = n - ; i >= ; i--)sa[--c[x[i]]] = i;
for(j = ; j <= n; j <<= ){
p = ;
for(i = n - j; i < n; i++)y[p++] = i;
for(i = ; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j;
for(i = ; i < m; i++)c[i] = ;
for(i = ; i < n; i++)c[x[y[i]]]++;
for(i = ; i < m; i++)c[i] += c[i - ];
for(i = n - ; i >= ; i--)sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ;
x[sa[]] = ;
for(i = ; i < n; i++)
x[sa[i]] = y[sa[i - ]] == y[sa[i]] && y[sa[i - ] + j] == y[sa[i] + j] ? p - :p++;
if(p >= n)break;
m = p;
}
} void get_height(int s[], int n)
{
int i, j, k = ;
//cout<<"SA:"<<endl;
for(i = ; i <= n; i++){
//cout<<sa[i]<<endl;
rnk[sa[i]] = i;
}
for(i = ; i < n; i++){
if(k) k--;
j = sa[rnk[i] - ];
while(s[i + k] == s[j + k])k++;
height[rnk[i]] = k;
}
} bool check(int t)
{
int num = ;
for(int i = ; i <= n; i++){
if(height[i] >= t){
num++;
if(num >= k)return true;
}
else num = ;
}
return false;
} int s[maxn];
int main()
{
while(scanf("%d%d", &n, &k) != EOF){
//scanf("%s", str);
int m = -inf;
for(int i = ; i < n; i++){
scanf("%d", &s[i]);
m = max(m, s[i]);
cnt[i] = ;
}
s[n] = cnt[n] = ;
build_sa(s, n + , m + );
//cout<<1<<endl;
get_height(s, n);
//cout<<2<<endl; int st = , ed = n, ans;
while(st <= ed){
int mid = (st + ed) / ;
if(check(mid)){
st = mid + ;
ans = mid;
}
else{
ed = mid - ;
}
} printf("%d\n", ans); }
return ;
}

poj3261 Milk Patterns【后缀数组】【二分】的更多相关文章

  1. POJ-3261 Milk Patterns,后缀数组+二分。。

                                                        Milk Patterns 题意:求可重叠的至少重复出现k次的最长的字串长. 这题的做法和上一题 ...

  2. Poj 3261 Milk Patterns(后缀数组+二分答案)

    Milk Patterns Case Time Limit: 2000MS Description Farmer John has noticed that the quality of milk g ...

  3. POJ3261 Milk Patterns —— 后缀数组 出现k次且可重叠的最长子串

    题目链接:https://vjudge.net/problem/POJ-3261 Milk Patterns Time Limit: 5000MS   Memory Limit: 65536K Tot ...

  4. BZOJ 1717 [USACO06DEC] Milk Patterns (后缀数组+二分)

    题目大意:求可重叠的相同子串数量至少是K的子串最长长度 洛谷传送门 依然是后缀数组+二分,先用后缀数组处理出height 每次二分出一个长度x,然后去验证,在排序的后缀串集合里,有没有连续数量多于K个 ...

  5. poj3261 Milk Patterns 后缀数组求可重叠的k次最长重复子串

    题目链接:http://poj.org/problem?id=3261 思路: 后缀数组的很好的一道入门题目 先利用模板求出sa数组和height数组 然后二分答案(即对于可能出现的重复长度进行二分) ...

  6. poj 3261 Milk Patterns 后缀数组 + 二分

    题目链接 题目描述 给定一个字符串,求至少出现 \(k\) 次的最长重复子串,这 \(k\) 个子串可以重叠. 思路 二分 子串长度,据其将 \(h\) 数组 分组,判断是否存在一组其大小 \(\ge ...

  7. [USACO06FEC]Milk Patterns --- 后缀数组

    [USACO06FEC]Milk Patterns 题目描述: Farmer John has noticed that the quality of milk given by his cows v ...

  8. POJ3261 Milks patterns(后缀数组)

    Farmer John has noticed that the quality of milk given by his cows varies from day to day. On furthe ...

  9. 【poj 3261】Milk Patterns 后缀数组

    Milk Patterns 题意 给出n个数字,以及一个k,求至少出现k次的最长子序列的长度 思路 和poj 1743思路差不多,二分长度,把后缀分成若干组,每组任意后缀公共前缀都>=当前二分的 ...

  10. POJ 3261 Milk Patterns 后缀数组求 一个串种 最长可重复子串重复至少k次

    Milk Patterns   Description Farmer John has noticed that the quality of milk given by his cows varie ...

随机推荐

  1. Springboot @webfilter @order filter过滤器

    我们使用@WebFilter注解的时候发现注解里面没有提供可以控制执行顺序的参数 @WebFilter 的属性 属性名 类型 描述 filterName String 指定过滤器的 name 属性,等 ...

  2. SpringMVC由浅入深day01_9商品修改功能开发

    9 商品修改功能开发 9.1 需求 操作流程: 1.进入商品查询列表页面 2.点击修改,进入商品修改页面,页面中显示了要修改的商品(从数据库查询) 要修改的商品从数据库查询,根据商品id(主键)查询商 ...

  3. django学习笔记:AdminSite界面配置

    (一)重定义字段顺序: 修改对应应用目录下的admin.py class PollAdmin(admin.ModelAdmin):     fields = ['pub_date', 'questio ...

  4. ip防刷脚本

    #!/bin/sh #防刷脚本 #env ACCESS_PATH=/home/wwwlogs ACCESS_LOG=y.log IPTABLES_TOP_LOG=iptables_top.log DR ...

  5. 随心所欲玩复制 详解robocopy

    说实话,Windows系统自带的复制功能不仅功能简单,而且定制性也不强,每每在对大量文件进行复制.移动.备份时,总少不了繁杂往复的操作.不过幸好,微软意识到了这一点,为我们提供了一款很强力的复制备份工 ...

  6. 获取访客IP、地区位置信息、浏览器、来源页面

    <?php //这个类似用来获取访客信息的 //方便统计 class visitorInfo { //获取访客ip public function getIp() { $ip=false; if ...

  7. Sqlserver Sequence操作

    USE [database_test] GO --创建SEQUENCE CREATE SEQUENCE defaultSequence AS INT --设置开始行 START --自增量 INCRE ...

  8. 【转载】.NET 开发者必备的工具箱

    本文作者Spencer是一名专注于ASP.NET和C#的程序员,他列举了平时工作.在家所使用的大部分开发工具,其中大部分工具都是集中于开发,当然也有一些其它用途的,比如图片处理.文件压缩等. 如果你是 ...

  9. python+机器学习 算法用到的知识点总结

    1.浅述python中argsort()函数的用法 (1).先定义一个array数据 1 import numpy as np 2 x=np.array([1,4,3,-1,6,9]) (2).现在我 ...

  10. Android开发训练之第五章第四节——Syncing to the Cloud

    Syncing to the Cloud GET STARTED DEPENDENCIES AND PREREQUISITES Android 2.2 (API level 8) and higher ...