1016: [JSOI2008]最小生成树计数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 6200  Solved: 2518
[Submit][Status][Discuss]

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8
/*
* @Author: LyuC
* @Date: 2017-09-07 21:48:20
* @Last Modified by: LyuC
* @Last Modified time: 2017-09-12 17:52:51
*/
/*
题意:现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道
这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则
这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方
案数对31011的模就可以了。 思路:每个最小生成树的相同权值的边数是相同的,并且连通性是相同的,只需要枚举每个
权值的相同连通性,并且是最小生成树中这个权值的个数的方案数,然后组合一下就行了
*/
#include <bits/stdc++.h> #define MAXN 105
#define MAXM 1005
#define mod 31011 using namespace std; struct Edge{
int u,v,w;
bool operator < (const Edge & other) const{
return w<other.w;
}
}edge[MAXM];
vector<Edge>v[MAXM];
int n,m;
int x,y,z;
int bin[MAXN];
int root[MAXN];
int vis[MAXM];//每种权值用到的数量
int sum;
int la;
int pos;
int res; inline int findx(int x){
int s=x;
while(x!=bin[x])
x=bin[x];
bin[s]=x;
return x;
} inline int Count(int x){
int s=;
while(x){
if(x%)
s++;
x/=;
}
return s;
} inline void init(){
for(int i=;i<=n;i++){
bin[i]=i;
root[i]=i;
}
memset(vis,,sizeof vis);
for(int i=;i<MAXM;i++)
v[i].clear();
res=;
pos=;
sum=;
} int main(){
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
init();
for(int i=;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
edge[i].u=x;
edge[i].v=y;
edge[i].w=z;
}
sort(edge,edge+m);
//处理每种权值需要的边数
la=-;
for(int i=;i<m;i++){
if(edge[i].w!=la){
la=edge[i].w;
bool flag=false;
for(int j=i;edge[j].w==la;j++){
int fx=findx(edge[j].u);
int fy=findx(edge[j].v);
if(fx!=fy){
flag=true;
bin[fx]=fy;
vis[pos]++;
sum++;
}
v[pos].push_back(edge[j]);
}
pos++;
}
}
if(sum!=n-){
puts("");
return ;
}
for(int i=;i<pos;i++){//枚举每个阶段用到权值的边
if(vis[i]==) continue;
int tol=(<<v[i].size());
int cur=;//可以的方案
for(int j=;j<tol;j++){
if(Count(j)!=vis[i]) continue;
bool flag=true;
memcpy(bin,root,sizeof root);
for(int k=;k<v[i].size();k++){
if((j&(<<k))!=){//如果这条边存在
int fx=findx(v[i][k].u);
int fy=findx(v[i][k].v);
if(fx==fy){
flag=false;
break;
}else{
bin[fx]=fy;
}
}
}
if(flag==true)
cur++;
}
res=res*cur%mod;
memcpy(bin,root,sizeof root);
for(int j=;j<v[i].size();j++){
int fx=findx(v[i][j].u);
int fy=findx(v[i][j].v);
if(fx!=fy){
bin[fx]=fy;
}
}
memcpy(root,bin,sizeof bin);
}
printf("%d\n",res%mod);
return ;
}

1016: [JSOI2008]最小生成树计数的更多相关文章

  1. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  2. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  3. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  4. 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集

    最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...

  5. 【BZOJ】1016: [JSOI2008]最小生成树计数(kruskal+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 想也想不到QAQ 首先想不到的是:题目有说,具有相同权值的边不会超过10条. 其次:老是去想组 ...

  6. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  7. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  8. 大视野 1016: [JSOI2008]最小生成树计数(最小生成树)

    总结:此类题需要耐心观察规律,大胆猜想,然后证明猜想,得到有用的性质,然后解答. 简单的说:找隐含性质. 传送门:http://61.187.179.132/JudgeOnline/problem.p ...

  9. 1016: [JSOI2008]最小生成树计数 - BZOJ

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

随机推荐

  1. Vuex 学习笔记

    Vuex 是什么? Vuex 是一个专为 Vue.js应用程序开发的状态管理模式.由于SPA应用的模块化,每个组件都有它各自的数据(state).视图(view)和方法(actions),当项目内容越 ...

  2. Hive任务优化(2)

    JOIN优化 1.大多数情况下,Hive会对每对Join连接对象启动一个MapReduce任务. 2.多表关联时,如果每个ON子句都使用相同的连接键的话,那么只会产生一个MapReduce Job. ...

  3. Cow Exhibition 变种背包

    Cow Exhibition Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  4. MyBatis Generator代码自动生成工具的使用

    MyBatis Generator MyBatis Generator有三种使用方式,分别是maven插件形式.命令行形式以及eclipse插件形式.我在这里使用的是命令行的形式(主要是命令行形式比较 ...

  5. 【笔记】如何查看HTTP请求头&&【实验吧】天下武功唯快不破

    打开Chrome浏览器,点击右上角“三”按钮. 点击工具-----再点击开发者工具   找到Network选项框.以百度经验页面为例,点击任务选框来查看网络请求流   在Network框内会有所有的请 ...

  6. 常见SQL分页方式效率比较

    结一下. 1.创建测试环境,(插入100万条数据大概耗时5分钟). ,) ) )) ),end 2.几种典型的分页sql,下面例子是每页50条,198*50=9900,取第199页数据. id id ...

  7. 用html+css+js做打地鼠小游戏

    html 代码 first.html <!DOCTYPE html> <html lang="en"> <head> <meta char ...

  8. PHP字符串替换str_replace()函数4种用法详解

    mixed str_replace ( mixed $search , mixed $replace , mixed $subject [, int &$count ] )该函数返回一个字符串 ...

  9. 学习笔记之CSS样式(选择器背景字体边框绝/相对、固定位置and分层流等)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. 通信技术:SSE设计方案(一)--- 前端Server-Sent Events概念讲解和基础类库完善发布

    好了,开篇还是要扯扯的,否则感觉这个技术讲的么有那么冻人,嗯,这个晚上是有点冷了,秋衣秋裤大家都该加起来了,反正我不帮你买,妹子除外,嘻嘻. 之前几篇博客,研究前端通信技术的第一层ajax技术,从最基 ...