1016: [JSOI2008]最小生成树计数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 6200  Solved: 2518
[Submit][Status][Discuss]

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8
/*
* @Author: LyuC
* @Date: 2017-09-07 21:48:20
* @Last Modified by: LyuC
* @Last Modified time: 2017-09-12 17:52:51
*/
/*
题意:现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道
这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则
这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方
案数对31011的模就可以了。 思路:每个最小生成树的相同权值的边数是相同的,并且连通性是相同的,只需要枚举每个
权值的相同连通性,并且是最小生成树中这个权值的个数的方案数,然后组合一下就行了
*/
#include <bits/stdc++.h> #define MAXN 105
#define MAXM 1005
#define mod 31011 using namespace std; struct Edge{
int u,v,w;
bool operator < (const Edge & other) const{
return w<other.w;
}
}edge[MAXM];
vector<Edge>v[MAXM];
int n,m;
int x,y,z;
int bin[MAXN];
int root[MAXN];
int vis[MAXM];//每种权值用到的数量
int sum;
int la;
int pos;
int res; inline int findx(int x){
int s=x;
while(x!=bin[x])
x=bin[x];
bin[s]=x;
return x;
} inline int Count(int x){
int s=;
while(x){
if(x%)
s++;
x/=;
}
return s;
} inline void init(){
for(int i=;i<=n;i++){
bin[i]=i;
root[i]=i;
}
memset(vis,,sizeof vis);
for(int i=;i<MAXM;i++)
v[i].clear();
res=;
pos=;
sum=;
} int main(){
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
init();
for(int i=;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
edge[i].u=x;
edge[i].v=y;
edge[i].w=z;
}
sort(edge,edge+m);
//处理每种权值需要的边数
la=-;
for(int i=;i<m;i++){
if(edge[i].w!=la){
la=edge[i].w;
bool flag=false;
for(int j=i;edge[j].w==la;j++){
int fx=findx(edge[j].u);
int fy=findx(edge[j].v);
if(fx!=fy){
flag=true;
bin[fx]=fy;
vis[pos]++;
sum++;
}
v[pos].push_back(edge[j]);
}
pos++;
}
}
if(sum!=n-){
puts("");
return ;
}
for(int i=;i<pos;i++){//枚举每个阶段用到权值的边
if(vis[i]==) continue;
int tol=(<<v[i].size());
int cur=;//可以的方案
for(int j=;j<tol;j++){
if(Count(j)!=vis[i]) continue;
bool flag=true;
memcpy(bin,root,sizeof root);
for(int k=;k<v[i].size();k++){
if((j&(<<k))!=){//如果这条边存在
int fx=findx(v[i][k].u);
int fy=findx(v[i][k].v);
if(fx==fy){
flag=false;
break;
}else{
bin[fx]=fy;
}
}
}
if(flag==true)
cur++;
}
res=res*cur%mod;
memcpy(bin,root,sizeof root);
for(int j=;j<v[i].size();j++){
int fx=findx(v[i][j].u);
int fy=findx(v[i][j].v);
if(fx!=fy){
bin[fx]=fy;
}
}
memcpy(root,bin,sizeof bin);
}
printf("%d\n",res%mod);
return ;
}

1016: [JSOI2008]最小生成树计数的更多相关文章

  1. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  2. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  3. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  4. 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集

    最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...

  5. 【BZOJ】1016: [JSOI2008]最小生成树计数(kruskal+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 想也想不到QAQ 首先想不到的是:题目有说,具有相同权值的边不会超过10条. 其次:老是去想组 ...

  6. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  7. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  8. 大视野 1016: [JSOI2008]最小生成树计数(最小生成树)

    总结:此类题需要耐心观察规律,大胆猜想,然后证明猜想,得到有用的性质,然后解答. 简单的说:找隐含性质. 传送门:http://61.187.179.132/JudgeOnline/problem.p ...

  9. 1016: [JSOI2008]最小生成树计数 - BZOJ

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

随机推荐

  1. 简单实用的CSS网页布局中文排版技巧

    由于汉字的特殊性,在css网页布局中,中文排版有别于英文排版.排版是一个麻烦的问题,小编认为,作为一个优秀的网页设计师和网页制作人员,掌握一些简单的中文排版技巧是不可或缺的,所以今天特意总结了几个简单 ...

  2. Angular2开发拙见

    本文集中讲讲笔者目前使用ng2来开发项目时对其组件的使用的个人的一些拙劣的经验. 先简单讲讲从ng1到ng2框架下组件的职责与地位: ng1中的一大特色--指令,分为属性型.标签型.css类型和注释型 ...

  3. python基础之条件循环语句

    前两篇说的是数据类型和数据运算,本篇来讲讲条件语句和循环语句. 0x00. 条件语句 条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块. 可以通过下图来简单了解条件语 ...

  4. Dubbo与Zookeeper、SpringMVC整合和使用

    作为dubbo框架初学者,能让框架跑起来非常不容易,非常感谢网上诸多大神提供的文章,本人参考文章地址是:https://my.oschina.net/xshuai/blog/891281 不过别人的记 ...

  5. go-fasthttp源码分析

    1.架构 listener->server->workerpool 1.1.workerpool中有两种缓存: a.wp.ready,缓存未退出worker, b.worker退出后用sy ...

  6. 说下browserslist

    browserslist 是一个开源项目 见到有些package.json里会有如下的配置参数 "browserslist": [ "> 1%", &qu ...

  7. 面试题之-----String,StringBuffer,StringBuilder的区别

    String :字符串常量,值不能改变. String s="abc"; s=s+"def"; System.out.println(s); 输出结果为: ab ...

  8. Spring Boot Document Part II(上)

    Part II. Getting started 这一章内容适合刚接触Spring Boot或者"Spring"家族的初学者!随着安装指导说明,你会发现对Spring boot有一 ...

  9. codeforces 8c Looking for Order

    https://vjudge.net/problem/CodeForces-8C 题意: 一个平面上放着许多东西,每个东西都有一个坐标,最开始一个人在一个起始坐标,她出发去拿东西,一次要么拿一件东西, ...

  10. MUI顶部选项卡的用法(tab-top-webview-main)

      前  言           MUI是一款最接近原生APP体验的高性能前端框架,它的比较重要的功能是:下拉刷新.侧滑导航.滑动触发操作菜单和顶部(底部)选项卡等 最近用MUI做手机app应用的时候 ...