二叉搜索树 (BST) 的创建以及遍历
二叉搜索树(Binary Search Tree) : 属于二叉树,其中每个节点都含有一个可以比较的键(如需要可以在键上关联值), 且每个节点的键都大于其左子树中的任意节点而小于右子树的任意节点的键。
1、BST 的总体结构:
主要的几种变量以及方法如上图所示,主要有插入、排序、删除以及查找等方法。键采用泛型,继承 IComparable, 便于比较。
其中节点的类如下图:
BST 类代码如下:
public class BST<Tkey, Tval> where Tkey : IComparable
{
private Node root; public class Node
{
private Tkey key;
private Tval val;
private int n; public Node(Tkey key, Tval val, int n)
{
this.key = key;
this.val = val;
}
public Tkey Key { get => key; }
public Tval Val { get => val; set => val = value; }
public Node left { set; get; }
public Node right { set; get; }
public int N { set => n = value; get => n; }
} public int Size()
public void Insert(Tkey, Tval)
public void Delete(Node x)
public void InorderTraversal()
}
2、插入新节点
根据键大于左节点, 小于右节点的定义,可用如下代码实现新节点的插入:
public void Insert(Tkey key, Tval val)
{
// 创建私有方法,便于传入参数 root
root = Insert(root, key, val);
} private Node Insert(Node x, Tkey key, Tval val)
{
// 若节点为空(无根节点),则创建新的节点
if (x == null)
{
return new Node(key, val, );
} // 比较键的大小,小于返回 -1 , 大于返回 1, 等于返回 0
int t = key.CompareTo(x.Key); if (t > ) { x.right = Insert(x.right, key, val); }
else if (t < ) { x.left = Insert(x.left, key, val); }
else { x.Val = val; } x.N = Size(x.left) + Size(x.right) + ; return x;
}
3、计算以该节点为根的节点总节点数
采用递归的方法,从根节点到循环到叶子节点
public int Size(Node x)
{
if (x == null) { return ; }
return Size(x.left) + Size(x.right) + ;
}
4、遍历
遍历分为广度遍历与深度遍历,如下图所示:
深度优先遍历的几种方式原理相似, 只是输出的节点键的位置不同而已。
中序遍历递归:
public void InorderTraversal_recursive(Node x)
{
if (x == null) { return; } InorderTraversal(x.left);
Console.Write(x.Key + " ");
InorderTraversal(x.right);
}
中序遍历非递归:
public void InorderTraversal_stack() // 利用堆栈先进后出的特性, 先将全部左节点压入,然后输出左节点,每输出一个左节点后切换到右节点, 继续输出
{
Stack<Node> nodeStack = new Stack<Node>();
Node currentNode = root; while (nodeStack != null || currentNode != null) // 此处判断 curretNode 非空,是因为首次循环 nodeStack 为空, 避免了在循环外添加根节点。
{
while (currentNode != null) // 将全部左节点压入堆栈
{
nodeStack.Push(currentNode);
currentNode = currentNode.left;
}
if (nodeStack.count != 0)
{
currentNode = nodeStack.Pop();
Console.Write(currentNode.key + " ");
currentNode = currentNode.right; // 切换到右节点
}
}
}
层序遍历:
// 利用队列先进先出的特性, 层层输出
public void LevelTraversal()
{
Queue<Node> nodeQueue = new Queue<Node>();
if (root != null) { nodeQueue.Enqueue(root); } while (nodeQueue.Count() != )
{
Node currentNode = nodeQueue.Dequeue();
Console.Write(currentNode.Key + " ");
// 将去除节点的子节点添加到队列的尾部
if (currentNode.left != null) { nodeQueue.Enqueue(currentNode.left); }
if (currentNode.right != null) { nodeQueue.Enqueue(currentNode.right); }
}
}
5. 证明二叉树为搜索树
根据定义,搜索树是二叉树的基础上添加的一个条件: 节点左子树全部节点小于节点, 节点右子树大于节点。中序遍历,全部节点按序遍历,由此我们只需要证明后一个节点大于前一个节点。
public bool isBST()
{
Stack<Node> nodeStack = new Stack<Node>();
Node currentNode = root;
Node preNode = null; if (nodeStack.Count() != || currentNode != null)
{
while (currentNode != null)
{
nodeStack.Push(currentNode);
currentNode = currentNode.left;
} if (nodeStack.Count() != )
{
currentNode = nodeStack.Pop();
// 此处需要判断 preNode 等于空的情况(当进行首个节点判断时,preNOde 为空, 跳过判断)
if (preNode != null && currentNode.Key.CompareTo(preNode.Key) <= ) { return false; } preNode = currentNode;
currentNode = currentNode.right;
}
}
return true;
}
二叉搜索树 (BST) 的创建以及遍历的更多相关文章
- C++版 - 剑指offer 面试题24:二叉搜索树BST的后序遍历序列(的判断) 题解
剑指offer 面试题24:二叉搜索树的后序遍历序列(的判断) 题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true.否则返回false.假设输入的数组的任意两个 ...
- 萌新笔记之二叉搜索树(BST)
前言,以前搞过线段树,二叉树觉得也就那样= =.然后数据结构的课也没怎么听过,然后下周期中考... 本来以为今天英语考完可以好好搞ACM了,然后这个数据结构期中考感觉会丢人,还是好好学习一波. 二叉搜 ...
- 给定一个二叉搜索树(BST),找到树中第 K 小的节点
问题:给定一个二叉搜索树(BST),找到树中第 K 小的节点. 出题人:阿里巴巴出题专家:文景/阿里云 CDN 资深技术专家. 考察点: 1. 基础数据结构的理解和编码能力 2. 递归使用 参考答案 ...
- PAT L2-004. 这是二叉搜索树吗?【前序遍历转化为后序遍历】
一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点, 其左子树中所有结点的键值小于该结点的键值: 其右子树中所有结点的键值大于等于该结点的键值: 其左右子树都是二叉搜索树. 所谓二叉搜索 ...
- 二叉搜索树(BST)
(第一段日常扯蛋,大家不要看)这几天就要回家了,osgearth暂时也不想弄了,毕竟不是几天就能弄出来的,所以打算过完年回来再弄.这几天闲着也是闲着,就掏出了之前买的算法导论看了看,把二叉搜索树实现了 ...
- 数据结构☞二叉搜索树BST
二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它可以是一棵空树,也可以是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它 ...
- 看动画学算法之:二叉搜索树BST
目录 简介 BST的基本性质 BST的构建 BST的搜索 BST的插入 BST的删除 简介 树是类似于链表的数据结构,和链表的线性结构不同的是,树是具有层次结构的非线性的数据结构. 树是由很多个节点组 ...
- 在二叉搜索树(BST)中查找第K个大的结点之非递归实现
一个被广泛使用的面试题: 给定一个二叉搜索树,请找出其中的第K个大的结点. PS:我第一次在面试的时候被问到这个问题而且让我直接在白纸上写的时候,直接蒙圈了,因为没有刷题准备,所以就会有伤害.(面完的 ...
- [LeetCode] Convert BST to Greater Tree 将二叉搜索树BST转为较大树
Given a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original B ...
随机推荐
- hdu4678 Mine 2013 Multi-University Training Contest 8 博弈题
Mine Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Submi ...
- node.js上除了Express还有哪些好用的web开发框架
老司机都有体会, 开发本身没有多难, 最纠结其实是最初的技术和框架选型, 本没有绝对的好坏之分, 可一旦选择了不适合于自己业务场景的框架, 将来木已成舟后开发和维护成本都很高, 等发现不合适的时候更换 ...
- 屏蔽掉Google Chrome 浏览器 textarea 单词拼写检测
可以使用html5的spellcheck属性来关闭对元素内容进行拼写检查. <!-以下两种书写方法正确--> <textarea spellcheck="true" ...
- ZOJ2286 Sum of Divisors 筛选式打表
我想我是和Segmentation Fault有仇,我一直以为是空间开大的问题,然后一直减少空间,还是SF,谁让n没有给范围了,qwq. 教训:以后注意输入范围和开的空间大小. #include< ...
- Python数据分析(二): Pandas技巧 (1)
第一部分: ipython http://www.cnblogs.com/cgzl/p/7623347.html 第二部分: numpy http://www.cnblogs.com/cgzl/p/7 ...
- canvas图表详解系列(3):动态饼状图(原生Js仿echarts饼状图)
本章建议学习时间4小时 学习方式:详细阅读,并手动实现相关代码(如果没有canvas基础,需要先学习前面的canvas基础笔记) 学习目标:此教程将教会大家如何使用canvas绘制各种图表,详细分解步 ...
- cf290-2015-2-3总结与反思(dfs判断无向图是否有环)
bool dfs(int i,int pre) { visit[i]=true; ;j<=v;j++) if(g[i][j]) { if(!visit[j]) return dfs(j,i); ...
- Akka(29): Http:Server-Side-Api,Low-Level-Api
Akka-http针对Connection的两头都提供了方便编程的Api,分别是Server-Side-Api和Client-Side-Api.通过这两个Api可以大大提高编程效率.当然,上期我们提到 ...
- SQL数据库的基础操作
一,认识SQL数据库 美国Microsoft公司推出的一种关系型数据库系统.SQLServer是一个可扩展的.高性能的.为分布式客户机/服务器计算所设计的数据库管理系统,实现了与WindowsNT的有 ...
- [oracle 使用(2)] Oracle的简单使用
1:oracle的服务 oracleservice + sid # 数据库服务 oracleoradb10g_home1listener # 数据库的监听服务. 2:启动本机数据库: 启动oracle ...