openpose模型在AI challenge人体骨骼关键点检测的表现
因为之前正好看了CMU在CVPR2017上的论文《Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields》
,而且他们提供了训练好的模型。所以就直接用CMU训练的模型在AI challenge的数据集上做了测试。最后没有使用AI challenge训练集训练的模型在AI challenge上的得分是0.1667,可以看作是一个baseline。
以下是预处理的说明以及加入预处理程序的源代码。openpose的源代码使用#openpose ##openpose标注出来了,剩下的就是AI challenge的预处理程序。
在Google Cloud 上使用1片NVIDIA Tesla K80 跑完AI challenge的测试集大约需要24小时,4秒左右处理一副图。
AI challenge测试要求的关键点顺序是:1右肩,2右肘,3右腕,4左肩,5左肘,6左腕,7右髋,8右膝,9右踝,10左髋,11左膝,12左踝,13头顶,14脖子
openpose源码中subset输出的关键点顺序是:1鼻子,2脖子,3右肩,4右肘,5右腕,6左肩,7左肘,8左腕,9右髋,10右膝,11右踝,12左髋,13左膝,14左踝,15左眼,16右眼,17左耳,18右耳,19 pt19
函数 subset2AIsubset, all_peaks2all_peaks_1d, listMultiKeypoints 负责把openpose的关键点转换成AI challenge 的关键点。
当然还得按照官网上的要求输出特定格式的JSON文件,如下所示:
[
{
"image_id": "a0f6bdc065a602b7b84a67fb8d14ce403d902e0d",
"keypoint_annotations": {
"human1": [261, 294, 1, 281, 328, 1, 0, 0, 0, 213, 295, 1, 208, 346, 1, 192, 335, 1, 245, 375, 1, 255, 432, 1, 244, 494, 1, 221, 379, 1, 219, 442, 1, 226, 491, 1, 226, 256, 1, 231, 284, 1],
"human2": [313, 301, 1, 305, 337, 1, 321, 345, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 313, 359, 1, 320, 409, 1, 311, 454, 1, 0, 0, 0, 330, 409, 1, 324, 446, 1, 337, 284, 1, 327, 302, 1],
"human3": [373, 304, 1, 346, 286, 1, 332, 263, 1, 0, 0, 0, 0, 0, 0, 345, 313, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 363, 386, 1, 361, 424, 1, 361, 475, 1, 365, 273, 1, 369, 297, 1],
...
}
}
...
]
#import numpy as np
import json
import os
#openpose
import keras
from keras.models import Sequential
from keras.models import Model
from keras.layers import Input, Dense, Activation
from keras.layers.convolutional import Conv2D
from keras.layers.pooling import MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.merge import Concatenate
from config_reader import config_reader
import scipy import cv2
import numpy as np
np.seterr(divide='ignore', invalid='ignore')
import util
import math
from numpy import ma
from scipy.ndimage.filters import gaussian_filter
##openpose
#openpose
def relu(x):
return Activation('relu')(x) def conv(x, nf, ks, name):
x1 = Conv2D(nf, (ks, ks), padding='same', name=name)(x)
return x1 def pooling(x, ks, st, name):
x = MaxPooling2D((ks, ks), strides=(st, st), name=name)(x)
return x def vgg_block(x): # Block 1
x = conv(x, 64, 3, "conv1_1")
x = relu(x)
x = conv(x, 64, 3, "conv1_2")
x = relu(x)
x = pooling(x, 2, 2, "pool1_1") # Block 2
x = conv(x, 128, 3, "conv2_1")
x = relu(x)
x = conv(x, 128, 3, "conv2_2")
x = relu(x)
x = pooling(x, 2, 2, "pool2_1") # Block 3
x = conv(x, 256, 3, "conv3_1")
x = relu(x)
x = conv(x, 256, 3, "conv3_2")
x = relu(x)
x = conv(x, 256, 3, "conv3_3")
x = relu(x)
x = conv(x, 256, 3, "conv3_4")
x = relu(x)
x = pooling(x, 2, 2, "pool3_1") # Block 4
x = conv(x, 512, 3, "conv4_1")
x = relu(x)
x = conv(x, 512, 3, "conv4_2")
x = relu(x) # Additional non vgg layers
x = conv(x, 256, 3, "conv4_3_CPM")
x = relu(x)
x = conv(x, 128, 3, "conv4_4_CPM")
x = relu(x) return x def stage1_block(x, num_p, branch): # Block 1
x = conv(x, 128, 3, "conv5_1_CPM_L%d" % branch)
x = relu(x)
x = conv(x, 128, 3, "conv5_2_CPM_L%d" % branch)
x = relu(x)
x = conv(x, 128, 3, "conv5_3_CPM_L%d" % branch)
x = relu(x)
x = conv(x, 512, 1, "conv5_4_CPM_L%d" % branch)
x = relu(x)
x = conv(x, num_p, 1, "conv5_5_CPM_L%d" % branch) return x def stageT_block(x, num_p, stage, branch): # Block 1
x = conv(x, 128, 7, "Mconv1_stage%d_L%d" % (stage, branch))
x = relu(x)
x = conv(x, 128, 7, "Mconv2_stage%d_L%d" % (stage, branch))
x = relu(x)
x = conv(x, 128, 7, "Mconv3_stage%d_L%d" % (stage, branch))
x = relu(x)
x = conv(x, 128, 7, "Mconv4_stage%d_L%d" % (stage, branch))
x = relu(x)
x = conv(x, 128, 7, "Mconv5_stage%d_L%d" % (stage, branch))
x = relu(x)
x = conv(x, 128, 1, "Mconv6_stage%d_L%d" % (stage, branch))
x = relu(x)
x = conv(x, num_p, 1, "Mconv7_stage%d_L%d" % (stage, branch)) return x
##openpose def subset2AIsubset(t, numPersons):
AIsubset=[]
for j in xrange(numPersons):
tempsubset=[]
for i in xrange(12):
#
#print(i+2)
tempsubset.append(t[j][i+2]) tempsubset.append(t[j][0])
tempsubset.append(t[j][1])
#print(AIsubset)
AIsubset.append(tempsubset)
return AIsubset def all_peaks2all_peaks_1d(all_peaks):
all_peaks_1d=[]
for item in all_peaks:
for item1 in item:
all_peaks_1d.append(item1)
return all_peaks_1d def listMultiKeypoints(all_peaks_1d, numPersons):
multi_keypoints=[]
for i in xrange(numPersons):
sp_keypoints=[]
for j in xrange(14):
if(AIsubset[i][j]== -1.):
sp_keypoints.append(0)
sp_keypoints.append(0)
sp_keypoints.append(0)
else:
sp_keypoints.append(all_peaks_1d[int(AIsubset[i][j])][0])
sp_keypoints.append(all_peaks_1d[int(AIsubset[i][j])][1])
sp_keypoints.append(1)
#print(sp_keypoints)
multi_keypoints.append(sp_keypoints)
return multi_keypoints def nPersons(t):
return len(t) def listHuman(nPersons):
list_human=[]
for i in xrange(numPersons):
list_human.append('human'+str(i+1))
return list_human #openpose
weights_path = "model/keras/model.h5" input_shape = (None,None,3) img_input = Input(shape=input_shape) stages = 6
np_branch1 = 38
np_branch2 = 19 # VGG
stage0_out = vgg_block(img_input) # stage 1
stage1_branch1_out = stage1_block(stage0_out, np_branch1, 1)
stage1_branch2_out = stage1_block(stage0_out, np_branch2, 2)
x = Concatenate()([stage1_branch1_out, stage1_branch2_out, stage0_out]) # stage t >= 2
for sn in range(2, stages + 1):
stageT_branch1_out = stageT_block(x, np_branch1, sn, 1)
stageT_branch2_out = stageT_block(x, np_branch2, sn, 2)
if (sn < stages):
x = Concatenate()([stageT_branch1_out, stageT_branch2_out, stage0_out]) model = Model(img_input, [stageT_branch1_out, stageT_branch2_out])
model.load_weights(weights_path)
##openpose #openpose
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2,3], [2,6], [3,4], [4,5], [6,7], [7,8], [2,9], [9,10], \
[10,11], [2,12], [12,13], [13,14], [2,1], [1,15], [15,17], \
[1,16], [16,18], [3,17], [6,18]]
# the middle joints heatmap correpondence
mapIdx = [[31,32], [39,40], [33,34], [35,36], [41,42], [43,44], [19,20], [21,22], \
[23,24], [25,26], [27,28], [29,30], [47,48], [49,50], [53,54], [51,52], \
[55,56], [37,38], [45,46]]
##openpose path = "./test0"
files = os.listdir(path)
list_image_names=[]
final_results=[]
num_processed_images=0.
total_images=30000.
for file in files:
num_processed_images+=1
print('file:',file)
print('number of image:',num_processed_images)
print('%.2f%%'%(num_processed_images/total_images*100))
list_image_names.append(str(file)[:-4])
#openpose
test_image = './test0/'+file
#test_image = 'sample_images/000a902c8674739c97f188157c63d709b45b7595.jpg'
oriImg = cv2.imread(test_image) param, model_params = config_reader()
multiplier = [x * model_params['boxsize'] / oriImg.shape[0] for x in param['scale_search']]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(oriImg, (0,0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model_params['stride'], model_params['padValue']) input_img = np.transpose(np.float32(imageToTest_padded[:,:,:,np.newaxis]), (3,0,1,2))/256 - 0.5; # required shape (1, width, height, channels)
print("Input shape: " + str(input_img.shape)) output_blobs = model.predict(input_img)
print("Output shape (heatmap): " + str(output_blobs[1].shape)) # extract outputs, resize, and remove padding
heatmap = np.squeeze(output_blobs[1]) # output 1 is heatmaps
heatmap = cv2.resize(heatmap, (0,0), fx=model_params['stride'], fy=model_params['stride'], interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0]-pad[2], :imageToTest_padded.shape[1]-pad[3], :]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) paf = np.squeeze(output_blobs[0]) # output 0 is PAFs
paf = cv2.resize(paf, (0,0), fx=model_params['stride'], fy=model_params['stride'], interpolation=cv2.INTER_CUBIC)
paf = paf[:imageToTest_padded.shape[0]-pad[2], :imageToTest_padded.shape[1]-pad[3], :]
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) heatmap_avg = heatmap_avg + heatmap / len(multiplier)
paf_avg = paf_avg + paf / len(multiplier)
##openpose
#openpose
U = paf_avg[:,:,16] * -1
V = paf_avg[:,:,17]
X, Y = np.meshgrid(np.arange(U.shape[1]), np.arange(U.shape[0]))
M = np.zeros(U.shape, dtype='bool')
M[U**2 + V**2 < 0.5 * 0.5] = True
U = ma.masked_array(U, mask=M)
V = ma.masked_array(V, mask=M) all_peaks = []
peak_counter = 0 for part in range(19-1):
map_ori = heatmap_avg[:,:,part]
map = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map.shape)
map_left[1:,:] = map[:-1,:]
map_right = np.zeros(map.shape)
map_right[:-1,:] = map[1:,:]
map_up = np.zeros(map.shape)
map_up[:,1:] = map[:,:-1]
map_down = np.zeros(map.shape)
map_down[:,:-1] = map[:,1:] peaks_binary = np.logical_and.reduce((map>=map_left, map>=map_right, map>=map_up, map>=map_down, map > param['thre1']))
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
peaks_with_score = [x + (map_ori[x[1],x[0]],) for x in peaks]
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))] all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
##openpose
#openpose
connection_all = []
special_k = []
mid_num = 10 for k in range(len(mapIdx)):
score_mid = paf_avg[:,:,[x-19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0]-1]
candB = all_peaks[limbSeq[k][1]-1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if(nA != 0 and nB != 0):
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
#
#print('vec0:',vec[0],'vec1:',vec[1])
# #
norm = math.sqrt(vec[0]*vec[0] + vec[1]*vec[1]+0.1)
vec = np.divide(vec, norm) startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
np.linspace(candA[i][1], candB[j][1], num=mid_num))) vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
for I in range(len(startend))])
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
for I in range(len(startend))]) score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
#
#print('norm',norm)
# #
score_with_dist_prior = sum(score_midpts)/len(score_midpts) + min(0.5*oriImg.shape[0]/norm-1, 0) criterion1 = len(np.nonzero(score_midpts > param['thre2'])[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append([i, j, score_with_dist_prior, score_with_dist_prior+candA[i][2]+candB[j][2]]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0,5))
for c in range(len(connection_candidate)):
i,j,s = connection_candidate[c][0:3]
if(i not in connection[:,3] and j not in connection[:,4]):
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if(len(connection) >= min(nA, nB)):
break connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
##openpose
#openpose
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist]) for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:,0]
partBs = connection_all[k][:,1]
indexA, indexB = np.array(limbSeq[k]) - 1 for i in range(len(connection_all[k])): #= 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): #1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1 if found == 1:
j = subset_idx[0]
if(subset[j][indexB] != partBs[i]):
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
print ("found = 2")
membership = ((subset[j1]>=0).astype(int) + (subset[j2]>=0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: #merge
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i,:2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = [];
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2]/subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
##openpose
numPersons= nPersons(subset)
#print(subset2AIsubset(subset, numPersons))
AIsubset = subset2AIsubset(subset,numPersons)
#print(all_peaks[i][numPersons][3]==[int(AIsubset[0][0])])
#all_peaks->all_peaks_1d
all_peaks_1d=all_peaks2all_peaks_1d(all_peaks)
#print('numPersons:',numPersons)
#print('multi_keypoints:',listMultiKeypoints(all_peaks_1d, numPersons))
keys=['image_id','keypoint_annotations']
values=[]
image_id=str(file)[:-4] keypoint_annotations = dict(zip(listHuman(numPersons), listMultiKeypoints(all_peaks_1d, numPersons)))
values.append(image_id)
values.append(keypoint_annotations) d = dict(zip(keys, values)) final_results.append(d)
print(final_results)
with open('data.json', 'w') as f:
json.dump(final_results, f) print(list_image_names)
[
{
"image_id": "a0f6bdc065a602b7b84a67fb8d14ce403d902e0d",
"keypoint_annotations": {
"human1": [261, 294, 1, 281, 328, 1, 0, 0, 0, 213, 295, 1, 208, 346, 1, 192, 335, 1, 245, 375, 1, 255, 432, 1, 244, 494, 1, 221, 379, 1, 219, 442, 1, 226, 491, 1, 226, 256, 1, 231, 284, 1],
"human2": [313, 301, 1, 305, 337, 1, 321, 345, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 313, 359, 1, 320, 409, 1, 311, 454, 1, 0, 0, 0, 330, 409, 1, 324, 446, 1, 337, 284, 1, 327, 302, 1],
"human3": [373, 304, 1, 346, 286, 1, 332, 263, 1, 0, 0, 0, 0, 0, 0, 345, 313, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 363, 386, 1, 361, 424, 1, 361, 475, 1, 365, 273, 1, 369, 297, 1],
...
}
}
...
]
openpose模型在AI challenge人体骨骼关键点检测的表现的更多相关文章
- dlib人脸关键点检测的模型分析与压缩
本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...
- 用华为HMS ML kit人体骨骼识别技术,Android快速实现人体姿势动作抓拍
你有没有过这种体验,拍照时对着镜头,脑子一片空白.表情僵硬.手和脚无处安放,最后拍出来的照片很是奇怪.拍照软件中的固定姿势抓拍功能可以帮助你:选择一个你想要的姿势模板,当你摆出同款姿势时,软件会进 ...
- 『关键点检测』CPN:Cascaded Pyramid Network for Multi-Person Pose Estimation
论文连接 网络简介 face++2017年coco keypoint benchmark 数据集冠军的文章,发表于CVPR201 1 提出了一种金字塔型的串接模型,即CPN(cascaded pyr ...
- 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支
下图Github地址:Mask_RCNN Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...
- 用keras实现人脸关键点检测(2)
上一个代码只能实现小数据的读取与训练,在大数据训练的情况下.会造内存紧张,于是我根据keras的官方文档,对上一个代码进行了改进. 用keras实现人脸关键点检测 数据集:https://pan.ba ...
- keras实现简单CNN人脸关键点检测
用keras实现人脸关键点检测 改良版:http://www.cnblogs.com/ansang/p/8583122.html 第一步:准备好需要的库 tensorflow 1.4.0 h5py ...
- OpenCV实战:人脸关键点检测(FaceMark)
Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author: Amusi Date: 2018-03-20 ...
- PCL—低层次视觉—关键点检测(iss&Trajkovic)
关键点检测往往需要和特征提取联合在一起,关键点检测的一个重要性质就是旋转不变性,也就是说,物体旋转后还能够检测出对应的关键点.不过说实话我觉的这个要求对机器人视觉来说是比较鸡肋的.因为机器人采集到的三 ...
- PCL—关键点检测(iss&Trajkovic)低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5069311.html 关键点检测往往需要和特征提取联合在一起,关键点检测的一个重要性质就是旋转不变性,也就是说,物 ...
随机推荐
- Android 中更新UI的方法
1)使用Activity.runOnUiThread(Runable action)方法 情景一: 在主线程中,定义方法,在方法中启动线程. public class MainActivity ext ...
- Django学习中遇到的问题(1)django migration No migrations to apply
C:\Users\Desktop\homeWork\Django_stu_man>python manage.py makemigrations Migrations for 'app01': ...
- Spring -- 配置bean的三种方法
配置通过静态工厂方法创建的bean public class StaticBookFactory { //静态工厂方法: public static Book getBook(String bookN ...
- http://zthdd.bokee.com/6189963.html
http://zthdd.bokee.com/6189963.html先保存
- Jquery购物车jsorder改进版,支持后台处理程序直接转换成DataTable处理
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- http中错误代码的含义整理
HTTP网页错误代码大全带解释 HTTP 400 - 请求无效HTTP 401.1 - 未授权:登录失败HTTP 401.2 - 未授权:服务器配置问题导致登录失败HTTP 401.3 - ACL 禁 ...
- Quartz格式设置说明
这些星号由左到右按顺序代表 : * * * * * * * 格式 ...
- JS中最经典的全局变量和局部变量问题
话不多说,直接上例子: 1.程序的运行结果为:100 10 100 var a = 10; function test(){ a = 100; console.log(a); console.lo ...
- 基于HTML5及WebGL开发的2D3D第一人称漫游进行碰撞检测
为了实现一个基于HTML5的场景小游戏,我采用了HT for Web来实现,短短200行代码,我就能实现用“第一人称”来操作前进后退上下左右,并且实现了碰撞检测. 先来看下实现的效果:http://h ...
- shell script测试命令(test)
shell script测试命令(test) test命令 检查系统上面某些文件或者相关的属性 常用选项 test -e :检查该文件名是否存在 例:检查/dmtsai是否存在 [root@local ...