深度学习之tensorflow (一)
一、TensorFlow简介
1.TensorFlow定义:
tensor :张量,N维数组
Flow : 流,基于数据流图的计算
TensorFlow : 张量从图像的一端流动到另一端的计算过程,是将复杂的数据结 构传输至人工智能神经网络中进行分析和处理的过程。
2. 工作模式:
图graphs表示计算任务,图中的节点称之为op(operation) ,一个 op可以获得0个 或多个张量(tensor),通过创建会话(session)对象来执行计算,产生0个或多个tensor。
其工作模式分为两步:(1)define the computation graph
(2)run the graph (with data) in session
3. 特点:
(1)异步:一处写、一处读、一处训练
(2)全局 : 操作添加到全局的graph中 , 监控添加到全局的summary中,
参数/损失添加到全局的collection中
(3)符号式的:创建时没有具体,运行时才传入
二、 代码
1 、定义神经网络的相关参数和变量
# -*- coding: utf-8 -*-
# version:python 3.5
import tensorflow as tf
from numpy.random import RandomState batch_size = 8
x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
w1= tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1))
y = tf.matmul(x, w1)
2、设置自定义的损失函数
# 定义损失函数使得预测少了的损失大,于是模型应该偏向多的方向预测。
loss_less = 10
loss_more = 1
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
3、生成模拟数据集
rdm = RandomState(1)
X = rdm.rand(128,2)
Y = [[x1+x2+rdm.rand()/10.0-0.05] for (x1, x2) in X]
4、训练模型
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % 128
end = (i*batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
print("After %d training step(s), w1 is: " % (i))
print sess.run(w1), "\n"
print "Final w1 is: \n", sess.run(w1)
结果:
After 0 training step(s), w1 is:
[[-0.81031823]
[ 1.4855988 ]] After 1000 training step(s), w1 is:
[[ 0.01247112]
[ 2.1385448 ]] After 2000 training step(s), w1 is:
[[ 0.45567414]
[ 2.17060661]] After 3000 training step(s), w1 is:
[[ 0.69968724]
[ 1.8465308 ]] After 4000 training step(s), w1 is:
[[ 0.89886665]
[ 1.29736018]] Final w1 is:
[[ 1.01934695]
[ 1.04280889]]
5、重新定义损失函数,使得预测多了的损失大,于是模型应该偏向少的方向预测
loss_less = 1
loss_more = 10
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % 128
end = (i*batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
print("After %d training step(s), w1 is: " % (i))
print sess.run(w1), "\n"
print "Final w1 is: \n", sess.run(w1)
结果:
After 0 training step(s), w1 is:
[[-0.81231821]
[ 1.48359871]] After 1000 training step(s), w1 is:
[[ 0.18643527]
[ 1.07393336]] After 2000 training step(s), w1 is:
[[ 0.95444274]
[ 0.98088616]] After 3000 training step(s), w1 is:
[[ 0.95574027]
[ 0.9806633 ]] After 4000 training step(s), w1 is:
[[ 0.95466018]
[ 0.98135227]] Final w1 is:
[[ 0.95525807]
[ 0.9813394 ]]
深度学习之tensorflow (一)的更多相关文章
- 深度学习之TensorFlow构建神经网络层
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...
- 深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把N ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleN ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实 ...
- 分享《机器学习实战基于Scikit-Learn和TensorFlow》中英文PDF源代码+《深度学习之TensorFlow入门原理与进阶实战》PDF+源代码
下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+ ...
- 深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动
前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和108 ...
- 深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装
一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相 ...
- 截图:【炼数成金】深度学习框架Tensorflow学习与应用
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络 MINIST数据集分类器简单版 ...
- 转发——谷歌云官方:一小时掌握深度学习和 TensorFlow
转发——谷歌云官方:一小时掌握深度学习和 TensorFlow 本文转发自新智元,链接如下: http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==& ...
- 深度学习篇——Tensorflow配置(傻瓜安装模式)
前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就 ...
随机推荐
- Hadoop通过HCatalog编写Mapreduce任务访问hive库中schema数据
1.dirver package com.kangaroo.hadoop.drive; import java.util.Map; import java.util.Properties; impor ...
- C#基础之转换
C#中一共有两种转换方式,隐式转换和显示转换 隐式转换:就是不需要声明就能进行的转换,通俗来说就是小范围内的数据类型转大范围数据类型 显示转换:就是通常说的强制转换,需要在代码中写明要的数据类型.通俗 ...
- C# 判断文件编码
我们的项目中会包含有很多文件,但是可能我们没有注意到的,我们的文件的编码不一定是utf-8,所以可能在别人电脑运行时出现乱码.最近在做一个项目,这个项目可以把我们的文件夹里的所有文本,判断他们是什么编 ...
- PHP连接mysql数据库进行增删改查--删除
删除: 1.首页 在foreach里面加入 <td><a href='dele.php?id={$i[0]}'>删除</a></td> 在上面< ...
- BootStrap教程完整版
http://www.runoob.com/bootstrap/bootstrap-navbar.html
- jfinal使用配置文件注意事情
使用Popkit @Override public void configConstant(Constants me) { me.setViewType(ViewType.JSP); PropKit. ...
- netbeans 字体发虚
今天更新了netbeans,重启后蛋疼了,字体发虚,搜索网络后有得到如下方案: 对Archlinux,去/usr/share/netbeans/etc,里面找到netbeans.conf,给下面一行参 ...
- dubbo的架构
dubbo架构图如下所示: 节点角色说明: Provider: 暴露服务的服务提供方. Consumer: 调用远程服务的服务消费方. Registry: 服务注册与发现的注册中心. Monitor: ...
- session失效问题
具体设置很简单,方法有三种: ()在主页面或者公共页面中加入:session.setMaxInactiveInterval();参数600单位是秒,即在没有10分钟活动后,session将失效. 这里 ...
- 在Windows上搭建PhoneGAP(crodova)的开发环境
PhoneGAP是一个可以将web应用打包成移动应用的开源框架,使用它可以迅速的将HTML.CSS和JavaScript开发的web应用打包成跨平台的移动应用程序,而Apache Cordova是Ph ...