POJ 3463 最(次)短路条数
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 9497 | Accepted: 3340 |
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
Hint
The first test case above corresponds to the picture in the problem description.
题意:旅行团每天固定的从S地出发到达T地,为了省油要求尽量走最短路径或比最短路径长1单位距离的路径,求满足条件的路径条数
算法:最短路和次短路。Dijkstra算法。采用邻接表建图。
dis[x][2]:dis[x][0]表示起点到x的最短路、dis[x][1]表示起点到x的次短路;
arr[x][2]:arr[x][0]表示起点到x的最短路条数、arr[x][1]表示起点到x的次短路的条数;
vis[x][2]对应于x和0、1功能为记录该点是否被访问!
那么如何更新最小和次小路呢?显然我们容易想到下面的方法:
1.if(x<最小)更新最小,次小;
2.else if(x==最小)更新方法数;
3.else if(x<次小)更新次小;
4.else if(x==次小)更新方法数;
最后说说dijkstra的循环部分、这也是本题的关键。为什么我们要循环2*nnum-1次?显然这道题中我们每一条边都需要考虑、这不是在求最短的一条,说白了是让你求出所有的可能组合,那么我们势必对每一种情况都需要遍历一次,虽然中间有重复。最短路里已知[start][0]已被标记为访问过,那么就只有nnum-1次遍历了,而次短路我们则需要遍历nnum次,这样两者加起来就为2*nnum-1次。这与我们平时使用优先队列+heap是一样的。只是更加细化了而已。
代码:
//#include<bits/stdc++.h>
//#include<regex>
#include <vector>
#include <cstdio>
#include "cstring"
#include <algorithm>
#define db double
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define MP make_pair
#define PB push_back
#define fr(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=1e6+;
const int mod=1e9+;
const int MOD=mod-;
const db eps=1e-;
//const db pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
int h[N],d[N][],c[N][];
bool vis[N][];
struct P
{
int v,w,nx;
P(int x,int y,int z):v(x),w(y),nx(z){};
P(){};
};
vector<P> e;
int cnt,n,m,t;
void add(int x,int y,int z)
{ e.push_back(P(y,z,h[x]));
h[x]=cnt++;
}
void dij(int s,int g)
{
memset(vis,, sizeof(vis));
memset(c,, sizeof(c));
for(int i=;i<=n;i++){
d[i][]=inf;
d[i][]=inf;
}
int k,ok;
d[s][]=,c[s][]=; for(int ii=;ii<*n;ii++)
{
int ans=inf;
for(int i=;i<=n;i++){
if(!vis[i][]&&d[i][]<ans){//取最近的点
k=i;
ok=;
ans=d[i][];
}
else if(!vis[i][]&&d[i][]<ans){
k=i;
ok=;
ans=d[i][];
}
}
if(ans==inf) break;
vis[k][ok]=;
for(int j=h[k];j!=-;j=e[j].nx){
int v=e[j].v,w=e[j].w;
if(d[v][]>ans+w){//更新最短路
d[v][]=d[v][];
c[v][]=c[v][];
d[v][]=ans+w;
c[v][]=c[k][ok];
}
else if(d[v][]==ans+w){//更新最短路条数
c[v][]+=c[k][ok];
}
else if(d[v][]>ans+w)//更新次短路
d[v][]=ans+w,c[v][]=c[k][ok];
else if(d[v][]==ans+w)//次短路条数
c[v][]+=c[k][ok];
}
}
if(d[g][]==d[g][]+)
c[g][]+=c[g][]; pi(c[g][]); }
int main()
{
ci(t);
while(t--)
{
ci(n),ci(m);
e.clear();
cnt=;
memset(h,-, sizeof(h));
for(int i=;i<m;i++){
int x,y,z;
ci(x),ci(y),ci(z);
add(x,y,z);
}
int s,g;
ci(s),ci(g);
dij(s,g);
}
return ; }
POJ 3463 最(次)短路条数的更多相关文章
- hdu3191+hdu1688(求最短路和次短路条数,模板)
hdu3191题意:求出次短路的长度和条数 #include<iostream> #include<cstdio> #include<cstring> #inclu ...
- poj 3463 Sightseeing(次短路+条数统计)
/* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...
- POJ 3463 Sightseeing (次短路经数)
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions:10005 Accepted: 3523 Descr ...
- POJ - 3463 Sightseeing 最短路计数+次短路计数
F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...
- codeforces257 div2 D最短路条数
题意: 给一个无向图,总共有 n个点,m+k条边,给定点所连的k条边可以选择删除 问最多删除多少条可以保持该定点到其他点的最短路不变 题解: 从定点出发做单元最短路 首先如果定点到某个点的最短路小于 ...
- 紧急救援 L2-001 dijkstra 打印路径 最短路条数 权值
较为复杂的dijkstra 包含路径打印 最小路的条数 最小路径的情况下取最大权值 v0要是标记就会出错...? 有权值的题目 不能设置mp[i][i]为0 否则会无限加权 这题很有参考价值 ...
- hdu 3191 How Many Paths Are There (次短路径数)
How Many Paths Are There Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java ...
- 关于 最短路条数 和 边不可重复最短路条数问题 /hdu3599(边不可重复最短路)
原先一直在做一道省赛题,由于题意错误理解成球最短路条数,误打误撞敲了最短路条数,又发现hdu3599(多校)求边不可重复最短路条数.下面说说俩种问题解法: 最短路条数: 求一个图一共一几条最短路径,思 ...
- poj 3463 最短路与次短路的方案数求解
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8968 Accepted: 3139 Descr ...
随机推荐
- 小兴趣:用python生成excel格式座位表
脚本分两个文件: 1.生成二维随机列表:GenerateLocaltion.py 2.将列表导入excel文件:CreateExcel.py 先上GenerateLocaltion.py: impor ...
- PythonTip--一马当先--bfs
刚学python,小试牛刀 一马当先 讨论此题 | 解题报告 顶(39) (AC/Submit)Ratio(477|1829)26.08% 踩(1) 描述: 下过象棋的人都知道,马只能走'日'字形(包 ...
- Java 运行期数据区
对于 Java 开发者来说,由虚拟机进行内存管理是把双刃剑,一方面免去了繁杂的内存管理工作,另一方面,一旦出现内存泄漏和溢出方面的问题,如果不了解虚拟机是怎样使用内存的,排查问题将成为一项艰难的工作. ...
- [PGM] Exact Inference for calculating marginal distribution
如何在贝叶斯网络中求解某变量的边缘分布? 这是一个问题. 贝叶斯网络如下: CPTs如下: (1) How to compute p( L | C = high )? p( L | C = high ...
- 微信小程序(有始有终,全部代码)开发---跑步App+音乐播放器 Bug修复
开篇语 昨晚发了一篇: <简年15: 微信小程序(有始有终,全部代码)开发---跑步App+音乐播放器 > 然后上午起来吃完午饭之后,我就准备继续开工的,但是突然的,想要看B站.然后在一股 ...
- linux下U盘挂载
linux下挂载U盘 一.Linux挂载U盘:1.插入u盘到计算机,如果目前只插入了一个u盘而且你的硬盘不是scsi的硬盘接口的话,那它的硬件名称为:sda1,可以用"fdisk -l&qu ...
- MySQL、Oracle数据库之操作系统版本选择
玩了快五年的Oracle,期间接触的操作系统大都是linux和aix,其中linux大部分为5.8的红帽子以及centos,oracle可以在上边运行稳定且需要安装其他与oracle相关的rpm包都是 ...
- [BZOJ 3629][ JLOI2014 ]聪明的燕姿
这道题考试选择打表,完美爆零.. 算数基本定理: 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积N=P₁^a₁ P₂^a₂…Pn^an,这里P₁<P₂<…<Pn均为质数, ...
- 搭建ElasticSearch+MongoDB检索系统
ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Apach ...
- 【有意思的BUG】分享按钮 分享功能
[分享按钮]是一个常见的功能,你可以把看到的有意思的东西分享到自己的BLOG.朋友圈之类的地方. 但是,分享出去的文本(也可以包含图片)在每个目标网站上面的格式并不是统一的,所以就存在了美感的三六九等 ...