本篇随笔主要从以下三个方面介绍树的平衡:

1):BST不平衡问题

2):BST 旋转

3):AVL Tree

一:BST不平衡问题的解析

之前有提过普通BST的一些一些缺点,例如BST的高度是介于lgN和N之间的,如果是N的的话,显然效率很低,不是我们需要的;但是在实际情况中,BST的高度h = N的情况却经常出现,例如下图所示。在BST中search,insert的running time都等于BST的高度h,我们肯定希望高度h越小越好,best case就是lgN。下图的example 2的情况,我们会称之为这个BST是不平衡的。 所以如果遇到这种不平衡的BST,我们如何解决呢?如何将不平衡的BST转化成平衡的BST呢?如何将BST的高度h从N转化成lgN呢?

二:树的平衡

下面我们就来介绍一下树的旋转 rotation。BST是可以经过一些旋转操作后,仍然保持BST的结构不变的,即对于每一个node,该node的left child的值总是小于这个node的值,而该node的right child的值总是大于这个node的值。经过总结,这个旋转主要可以分为4中模式,这四种模式如下面的两图所示:

这四种rotation的方式是由BST的特性所决定的,至于为什么这样旋转是是正确的,也是由BST的特点所确定的,我在这就不证明了。只要大家记住BST可以有这4中旋转模式即可。其实上面所示的rotation过程,都是为了平衡树的目的。 那么现在有一个问题来了,我们说了这么多平衡,不平衡的概念,前面我们都是通过直观的感受来体味平衡或者不平衡,那么到底有什么明确的指标可以指明一个BST到底是平衡还是不平衡的呢???这个指标到底是什么呢?那么下面就要解释AVL Tree的概念了。

三:AVL Tree

首先AVL Tree要满足以下2个条件:

1. AVL Tree遵循BST的结构;即left child 小于当前node, right child大于当前node。

2.每一个node的2个 child nodes的高度相差不大于1。

根据上面的条件,我们可以看出AVL Tree其本质是一种特殊的BST。所以我们现在有一个定性的指标来判断一个BST是不是平衡的了,这个指标就是上面2个条件。当然了BST中有很多指标来判读一个BST是不是平衡的,我们这里只是用AVL Tree作为其中之一个指标,你也可以用其他的指标方法。

所以AVL Tree是平衡的,其高度是h=lgN;

在AVL Tree中,每一个node的高度等于取其2个child node 的较大的高度值加1,即max[left child height, right child height]+1; 若node==NULL,则其高度默认为-1.

当在构建AVL Tree的过程中,向其中insert node的时候,首先第一步跟BST insert一样,然后第二步是要检查insert后node的2个children之间的高度差,然后根据相应的高度差来判断相应的rotation的pattern,经过旋转后,使整个Tree仍然保持AVL Tree的特性,即满足上面的2个条件,所以仍然是平衡的。由于insert,search的操作的时间复杂度在BST中都是等于树的高度,AVL Tree作为一种特殊的BST,insert, search的操作的时间复杂度自然也是等于AVL的高度h=lgN. 这样的时间复杂度还是可以让我们满意的,其效率也要远远高于O(N)。AVL Tree的C++ 实现过程如下面的代码所示,以下代码实现了AVL Tree的insertion, sorting, rotation等功能。代码仅供学习交流等非盈利使用,不能用于商业目的,作者保留追溯的权利。

#include "AVLTree.hpp"
using namespace std; AVL_Tree::AVL_Tree(){ this->root = NULL;
} void AVL_Tree::setRoot(Node *root){ this->root = root;
}
Node *AVL_Tree::getRoot(){ return this->root;
} /*
* height of tree or subtree
*
* a node's height equals the max of node's left child's height and node's right child's height plus 1
*
*parameters:
1, node;//the node that we want to measure with
*
*return: the height of the node
*/
int AVL_Tree::height(Node *node){ int h = -; if (node != NULL) { int l_height = height(node->getLeft());
int r_height = height(node->getRight());
h = std::max(l_height,r_height) + ;
} return h;
}
/*
* the height difference of two children nodes
*
*parameters:
* 1, node;//the node which we want to know the differences of its two children
*
*return: int; the height difference of the two children nodes
*/ int AVL_Tree::heightDiff(Node *node){ int l_height = height(node->getLeft());
int r_height = height(node->getRight()); return l_height-r_height; } /*
*
*4 types of rotations
*
*1)left left pattern
*2)left right pattern
*3)right right pattern
*4)right left pattern
*
*/
void AVL_Tree::ll_rotation(Node *node){ int value = node->getData();
Node *temp = node->getLeft(); node->setData(temp->getData());
node->setLeft(temp->getLeft()); temp->setData(value);
temp->setLeft(temp->getRight());
temp->setRight(node->getRight());
node->setRight(temp); }
void AVL_Tree::lr_rotation(Node *node){ Node *temp = node->getLeft();
node->setLeft(temp->getRight());
temp->setRight(temp->getRight()->getLeft());
node->getLeft()->setLeft(temp);
ll_rotation(node); }
void AVL_Tree::rr_rotation(Node *node){ int value = node->getData();
Node *temp = node->getRight(); node->setData(temp->getData());
node->setRight(temp->getRight()); temp->setData(value);
temp->setRight(temp->getLeft());
temp->setLeft(node->getLeft());
node->setLeft(temp); }
void AVL_Tree::rl_rotation(Node *node){ Node *temp = node->getRight();
node->setRight(temp->getLeft());
temp->setLeft(node->getRight()->getRight());
node->getRight()->setRight(temp);
rr_rotation(node); } /*
*Description: balancing the node whoes two children nodes' height difference is greater than 1 or smaller than -1
*
*parameters:
* 1, node;//the node which we want to rotate with, it is the polar point of the rotation
*
*
*return: void
*
*
*
*/
void AVL_Tree::balance(Node *node){ int balance_factor = heightDiff(node);//differences of the node's two sub nodes. if (balance_factor>) {//left side is heavy if (heightDiff(node->getLeft())>) {//left left case ll_rotation(node); }else{//left right case lr_rotation(node);
} }else if (balance_factor<-){//right side heavy if (heightDiff(node->getRight())<) {//right right case rr_rotation(node); }else{//right left case rl_rotation(node);
} }
} /*
* Description: insert a node into the AVL tree and keep the whole structure balanced after inserting
*
*Parameters:
* 1, Node *node;//the node which needs to be inserted
* 2, Node *root;//the root of the tree or subtree;
*
*Return: Node *;//the parent node of the inserted node;
*/ Node *AVL_Tree::insert(Node *node, Node *root){ if (this->root == NULL) { Node *root = new Node();
root->setLeft(NULL);
root->setRight(NULL);
root->setData(node->getData());
this->root = root; return root;
} if (root == NULL) { return node; }else if(node->getData() < root->getData()){ root->setLeft(insert(node, root->getLeft()));
balance(root); }else if (node->getData()>=root->getData()){ root->setRight(insert(node, root->getRight()));
balance(root);
} return root;
} /*
*Description: print out the sorted nodes of the AVL tree of AVL subtree
*
*parameters:
* 1, Node *node;//the root of the AVL tree of AVL subtree
*
*
*/
void AVL_Tree::inorderSort(Node *node){ if (node == NULL) { return;
} inorderSort(node->getLeft());
std::cout<<node->getData()<<" ";
inorderSort(node->getRight()); }

树的平衡 AVL Tree的更多相关文章

  1. PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  2. AVL树 高度平衡的二叉查找树

    1.What is AVL tree? AVL tree 是一种特殊的二叉查找树,,首先我们要在树中引入平衡因子balance,表示结点右子树的高度减去左子树的高度差(右-左),对于一棵AVL树要么它 ...

  3. AVL树(平衡二叉查找树)

    首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树 ...

  4. PAT 1066 Root of AVL Tree[AVL树][难]

    1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, ...

  5. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  6. 树的平衡之AVL树——错过文末你会后悔,信我

    学习数据结构应该是一个循序渐进的过程: 当我们学习数组时,我们要体会数组的优点:仅仅通过下标就可以访问我们要找的元素(便于查找). 此时,我们思考:假如我要在第一个元素前插入一个新元素?采用数组需要挪 ...

  7. 04-树5 Root of AVL Tree + AVL树操作集

    平衡二叉树-课程视频 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the tw ...

  8. 判断AVL树是否平衡

    AVL树是高度的平衡二插搜索树,其左子树和右子树的高度之差不超过1(树中的左子树和右子树都是AVL树),维持这个高度之差就要控制它的平衡因子.那么判断一颗AVL树是否平衡就需要判断它的左子树和右子树高 ...

  9. 1066 Root of AVL Tree (25分)(AVL树的实现)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. Javascript parseFloat、parseDouble类型转换,数值加减,四舍五入

    <script language="JavaScript">var a = "0.11";var b = "0.2801";va ...

  2. JSP技术介绍

    1. 技术介绍 JSP即Java Server Page,中文全称是Java服务器语言.它是由Sun Microsystems公司倡导.许多公司参与建立的一种动态网页技术标准,它在动态网页的建设中有强 ...

  3. nginx的5个特点

    nginx的5个特点(2017/11/16 白杨整理) 1.动静分离 Nginx是一种轻量级,高性能,多进程的Web服务器,非常适合作为静态资源的服务器使用,而动态的访问操作可以使用稳定的Apache ...

  4. Python 之 hello world

    写好的内容不小心关机都没了...奈何..重写一遍吧... 本机环境 : windows7 sp1 64位 企业版,python3.6 一:安装与配置 1:首先大胆的下载python,新入门的建议下载3 ...

  5. Node做中转服务器,转发接口

    查询各种资料,和整理网上一哥们不完整的接口.做成,可以使用的转发服务! 由于项目在做前后端分离,牵扯跨域和夸协议问题,临时抱佛脚,选择用nodejs做中转,我想应该好多人都用它.但是做普通的表单转发没 ...

  6. [转载] redis-cluster研究和使用

    转载自http://hot66hot.iteye.com/blog/2050676 最近研究redis-cluster,正好搭建了一个环境,遇到了很多坑,系统的总结下,等到redis3 release ...

  7. 学会WCF之试错法——数据传输

    数据传输 服务契约 [ServiceContract] public interface IService { [OperationContract] string GetData(int value ...

  8. SAX解析文件

    import javax.xml.parsers.ParserConfigurationException; import javax.xml.parsers.SAXParser; import ja ...

  9. 使用MongoVUE

    mongoDB版本号为3.4.10 在终端操作一顿后想看看它在可视化工具里面什么样子,于是就找了一个可视化工具,MongoVUE这个看起来还不错,因为我是windows系统所以就没有太多的挑选选择.在 ...

  10. python实现图片批量剪裁的程序

    from PIL import Image import os fin = 'D:/test' fout = 'D:/test2' for file in os.listdir(fin): file_ ...