Description

题意:有一排数量为N的方块,每次可以把连续的相同颜色的区间消除,得到分数为区间长度的平方,然后左右两边连在一起,问最大分数为多少。

\(1\leq N\leq200\)

Solution

区间DP,对于一个连续的同色区间,可以直接消掉,或者从左边或者右边搞到和它同色的区间和在一起再一起消掉。

读入序列时预处理一下,将各个连续同色区间处理为一个点,记录它的颜色和长度,便于处理

然后就是区间DP啦,虽然要表示左边和右边,但是左边状态也可以表示为左边序列的右边,就只要开3维就行了

那么\(dp[i][j][k]\)表示区间\(i\)到区间\(j\)且在区间\(j\)右边添加\(k\)个格子的最大分数

  1. 直接消除,即左边不考虑,为\(dp[i][j-1][0]+(len[j]+k)^2\)
  2. 考虑左边,在\(j\)右边枚举\(p\),且\(color[j]==color[p]\),则为\(max\{dp[i][p][k+len[j]]+dp[p+1][j-1][0]\}\)

Code

#include <cstdio>
#include <algorithm>
#include <cstring>
#define sq(a) ((a)*(a))
#define N 210
using namespace std; int T,col[N],dp[N][N][N],n,len[N]; inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
} int DP(int l,int r,int k){
int &tmp=dp[l][r][k];
if(tmp>-1) return tmp; tmp=DP(l,r-1,0)+sq(len[r]+k);
for(int p=l;p<r;++p){
if(col[p]!=col[r]) continue;
tmp=max(tmp,DP(l,p,k+len[r])+DP(p+1,r-1,0));
}
return tmp;
} int main(){
T=read();
for(int Ca=1;Ca<=T;++Ca){
memset(dp,-1,sizeof(dp));
memset(len,0,sizeof(len));
int L=read(),a=read(),l=1;
n=0;
for(int i=2;i<=L;++i){
int b=read();
if(b==a) l++;
else{
col[++n]=a;
len[n]=l;
l=1;
a=b;
}
}
col[++n]=a,len[n]=l;
for(int i=1;i<=n;++i) {dp[i][i][0]=sq(len[i]);dp[i][i-1][0]=0;}
printf("Case %d: %d\n",Ca,DP(1,n,0));
}
return 0;
}

【Uva10559】Blocks(区间DP)的更多相关文章

  1. $UVA10559\ Blocks\ $区间$dp$

    \(Des\) • 有一排数量为N的方块,每次可以把连续的相同颜色的区间消除,得到分数为 区间长度的平方,然后左右两边连在一起,问最大分数为多少. • n<=1 \(Sol\) 正解状态设得奇奇 ...

  2. UVA10559 Blocks(区间dp)

    有n个带有颜色的方块,没消除一段长度为x的连续的相同颜色的方块可以得到x^2的分数,让你用一种最优的顺序消除所有方块使得得分最多. 输入格式 第一行包含测试的次数t(1≤t≤15) 每个案例包含两行. ...

  3. UVA10559&POJ1390 Blocks 区间DP

    题目传送门:http://poj.org/problem?id=1390 题意:给出一个长为$N$的串,可以每次消除颜色相同的一段并获得其长度平方的分数,求最大分数.数据组数$\leq 15$,$N ...

  4. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  5. POJ 1390 Blocks(区间DP)

    Blocks [题目链接]Blocks [题目类型]区间DP &题意: 给定n个不同颜色的盒子,连续的相同颜色的k个盒子可以拿走,权值为k*k,求把所有盒子拿完的最大权值 &题解: 这 ...

  6. UVA 10559 Blocks——区间dp

    题目:https://www.luogu.org/problemnew/show/UVA10559 应该想到区间dp.但怎么设计状态? 因为连续的东西有分值,所以应该记录一下连续的有多少个. 只要记录 ...

  7. UVA 10559 Blocks —— 区间DP

    题目:https://www.luogu.org/problemnew/show/UVA10559 区间DP,有点难想: 为了方便,先把原来就是连续一段相同颜色的点看做一个点,记一下长度: f[i][ ...

  8. 『Blocks 区间dp』

    Blocks Description Some of you may have played a game called 'Blocks'. There are n blocks in a row, ...

  9. POJ1390 Blocks (区间DP)

    题目链接:POJ 1390.Blocks 题意: 有n个方块排成一列,每个方块有颜色即1到n的一个值,每次操作可以把一段相同颜色的方块拿走,长度为k,则获得的分数为 \(k\times k\),求可获 ...

  10. POJ 1390 Blocks (区间DP) 题解

    题意 t组数据,每组数据有n个方块,给出它们的颜色,每次消去的得分为相同颜色块个数的平方(要求连续),求最大得分. 首先看到这题我们发现我们要把大块尽可能放在一起才会有最大收益,我们要将相同颜色块合在 ...

随机推荐

  1. CKEdit( htm编辑器)

    http://ckeditor.com/   (强大的在线编辑器)

  2. Adobe阅读器漏洞(adobe_cooltype_sing)学习研究

    实验环境:Kali 2.0+Windows XP sp3+Adobe Reader 9.0.0 类别:缓冲区溢出 描述:这个漏洞针对Adobe阅读器9.3.4之前的版本,一个名为SING表对象中一个名 ...

  3. tensorflow 学习笔记 多层感知机

    # -*- coding: utf-8 -*- """ Created on Thu Mar 9 19:20:51 2017 @author: Jarvis " ...

  4. A workaround to change shared memory size for Docker containers in AWS ECS

    Issue Because of not supporting to specify the following docker run parameter, containers in ECS can ...

  5. C语言之逆序数

    #include<stdio.h>int main(){int num;int a,b,c,result,d,result1;scanf("%d",&num); ...

  6. ShoneSharp语言(S#)的设计和使用介绍系列(3)— 修炼工具

    ShoneSharp语言(S#)的设计和使用介绍 系列(3)- 修炼工具 作者:Shone 声明:原创文章欢迎转载,但请注明出处,https://www.cnblogs.com/ShoneSharp. ...

  7. SxsTrace程序追踪 && 错误信息分析

    先贴错误:应用程序无法运行,并行配置不正确 ,使用命令行sxstrace.exe.百度解决版本. 起因:同事给我一 EXE,然后基于 其进行开发 dll和模块,但是无法加入进程,无法运行. SxsTr ...

  8. jstl--->Core 核心标签库->URL操作

    jstl--->Core 核心标签库->URL操作 -->import.param.URL.redirect <c:import>将静态或动态文件包含至本身jsp页面 而 ...

  9. 【LintCode·入门】斐波那契数列

    斐波那契数列 描述 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, ...

  10. ssh中Hibernate懒加载,session问题的学习与理解

    交代本项目中要求获取session的方式如下: public Session getCurrentSession() { // 增删改使用的session,事务必须是开启的(Required,即pro ...