运用三角不等式加速Kmeans聚类算法
运用三角不等式加速Kmeans聚类算法
引言:最近在刷《数据挖掘导论》,第九章, 9.5.1小节有提到,可以用三角不等式,减少不必要的距离计算,从而达到加速聚类算法的目的。这在超大数据量的情况下,尤为重要。但是书中并没有给出解释和证明。本文以k-means聚类算法为代表,讲解下怎么利用三角不等式减少计算过程。
三角不等式
任一三角形,两边之和大于第三边,两边之差小于第三边。可以从欧式距离扩展到多维欧几里得空间:设任意三个向量a,b,c。d(x,y)代表x,y在空间上的距离,则三角不等式满足:
\[d(a,b)+d(b,c)\ge d(a,c) , d(a,b) - d(b,c) \le d(a,c)\]
K-means算法
K-mean算法
- 随机选择K个数据点作为初始质心
- repeat:
- 计算每一个数据点计算到现有K个质心的距离,将它归属到距离最近质心的所在簇中
- 重新计算质心。
- until 所有质心不再变动
定义
\[假设存在数据点集 X=\{x_1, x_2,..,x_n\} , 质心的集合C=\{ C_1,C_2,...,C_m\}, 对应的簇集合为S=\{ S_1,S_2,...,S_m\}。\]
三角不等式推出的引理
引理1:
\[设 C_i ,C_j(i\neq j )\in C, x \in X。如果2 d(x,C_i) \le d(C_i,C_j) ,那么d(C_i,x) \le d(C_j,x) 。
\]
引理2:
\[ 设C_i \in C, \exists C_j \in C,使得d(C_i,C_j) = min \ d(C_i,C)。对于数据点x \in X,若有2 d(x,C_i) \le d(C_i,C_j),\
那么min \ d(x,C) = d(C_i,x)。(记d(x,C)是x到所有质心的距离)\]
证明引理1:
因为有 \[2 d(C_i,x) \le d(C_i,C_j) \ (1)\]
且由三角不等式:\[ d(C_i,C_j) \le d(x,C_i) + d(x,C_j) \ (2)\]
所以 \[2 d(C_i,x) \le d(x,C_i) + d(x,C_j),即d(C_i,x) \le d(C_j,x)\]
证明引理2:
运用反证法:
假设 \[ \exists C_k \in C,使得d(C_k,x) < d(C_i,x), \]
由题干有:
\[ d(C_k,C_i) \ge d(C_i,C_j) (1) , d(x,C_i) \le d(C_i,C_j) (2)\]
又因为 \[ d(C_k,x) +d (C_i,x) \ge d(C_k,C_i) (3)\]
所以结合(1)(3):
\[ d(C_k,x) +d (C_i,x) \ge d(C_i,C_j) (4)\]
又由假设:
\[ 2d(C_i,x) > d(C_i,C_j) (5)\]
这与条件中\[2 d(x,C_i) \le d(C_i,C_j)\]相矛盾,所以可知假设不成立。
即 \[min \ d(x,C) = d(C_i,x)\]
运用引理1,引理2减少不必要的距离计算
\[对于每一个C_i,用一个hash表存放与它最近的距离 d(C_i,C_j)。\]
1.如果数据点x已经被分配
\[ 则x与它目前所在簇的质心的距离为d(C_i,x),与d(C_i,C_j)比较。 \\
如果 2 d(C_i,x) \le d(C_i,C_j),则说明不需要更换x的归属。(注意反之: 2 d(C_i,x) \gt d(C_i,C_j)),并不能说明x应该数据 C_j所在的簇,所以还需要继续计算x与每个质心的距离。)\]
2.如果数据点x还未被分配
\[ 则需要遍历计算, \forall C_i \in C, 比较 2 d(C_i ,x) \le d(C_i,C_j)是否成立,若成立,说明x应当归属 C_i ,无需再计算其他距离。\]
改进的K-means算法
K-mean算法
- 随机选择K个数据点作为初始质心
- repeat
- 计算k个质心间的距离,并且用hash表保存每个质心的到其他质心的最短距离。(用d(Ci,Cj)表示质心Ci和它最近质心是Cj的距离)。
4. repeat
对于每个数据点x
if(数据点x已分配在质心Ci所在簇)
if 2d(Ci,x) <=d(Ci,Cj)
x分配无需变动;
else
继续计算x到现有K个质心的距离,将它归属到距离最近质心的所在簇中
end if
else(数据点x未分配到任何簇)
for i from 0 to K do
if 2d(Ci,x) <=d(Ci,Cj)
将x归属到Ci所在簇中
退出for循环
end if
end for
end if - 重新计算质心。
- until 所有质心不再变动
引申
本文中只举例了使用欧几里得距离的K-means算法。其实本文中的d(x,y)不仅可以指代distance,更广义的可以指代dissimilarity。任何通过度量相异性的聚类算法都可以使用三角不等式,避免多余的计算,例如计算最近邻的DBSCAN。感兴趣的读者可以自己推导改进。
运用三角不等式加速Kmeans聚类算法的更多相关文章
- K-Means 聚类算法
K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...
- k-means聚类算法python实现
K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他 ...
- K-Means 聚类算法原理分析与代码实现
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...
- Kmeans聚类算法原理与实现
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...
- 机器学习六--K-means聚类算法
机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...
- 转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...
- 沙湖王 | 用Scipy实现K-means聚类算法
沙湖王 | 用Scipy实现K-means聚类算法 用Scipy实现K-means聚类算法
- Matlab中K-means聚类算法的使用(K-均值聚类)
K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小. 使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx, ...
- 视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析
原文地址:http://www.cnblogs.com/zjiaxing/p/5548265.html 在目前实际的视觉SLAM中,闭环检测多采用DBOW2模型https://github.com/d ...
随机推荐
- java学习笔记 --- 面向对象
一.对象和类 类(class):类是用于描述现实事物的,它将现实事物进行抽象化,模板化描述.将事物的特点(属性)和行为封装在其中.比如小汽车的图纸,图纸就是小汽车的模版.图纸上画着小汽车的各种特点和功 ...
- vue学习笔记 概述(一)
vue里 最常见的 最普遍的用法 应该是 var app = new Vue({ el: '#app', data: { message: 'Hello Vue!' }}) 下面把所有使用方法尽可能列 ...
- Java 枚举详解
为什么要用枚举 在博客系统中,一篇文章有且可能有这几种状态, 数据库中article文章表中state字段存储数值,表示其状态: 0(已发表Published) 1(草稿Draft) 2(撤回撤回(D ...
- Linux之环境变量
1. 变量的显示与设置 显示变量 echo \(PATH</font></code><br/> 取消变量 <code><font color=&q ...
- Android系统结构
从上图中可以看出,Android系统架构为四层结构,从上层到下层分别是应用程序层.应用程序框架层.系统运行库层以及Linux内核层,分别介绍如下: (1)Appliacation Android平台不 ...
- AM335X开发板学习系列——环境搭建(vbox虚拟机ubuntu14.04下minicom的安装和配置)
这个系列是我学习AM335X的总结. 1. ubuntu虚拟机的USB设备,选择启用usbserial 2. ubuntu虚拟机的网络,采用桥接模式,以保证开发板和ubuntu虚拟机能互相ping通 ...
- linux环境下 mysql数据库忘记密码 处理办法UPDATE user SET Password = password ( 'new-password' ) WHERE User = 'root' ;
整个修改过程大概3-10分钟(看个人操作),这个时间内mysql出于不需要密码就能登陆的状态,请设法保证系统安全 不罗嗦直接上步骤 1.vi /etc/my.cnf 在[mysqld]下,添加一句:s ...
- 什么是javascript的回调函数?
回调函数(callback) 基本上每本书里都会提一提实际上我们几乎每天都在用回调函数,那么如果问你到底什么是回调函数呢? 1. 回调函数是作为参数传递给另一个函数 2. 函数运行到某种程度时,执行回 ...
- Apriori算法(C#)
AprioriMethod.cs using System; using System.Collections.Generic; using System.Linq; using System.Web ...
- finally块执行时间
finally块在代码中什么时候被执行? 在Java语言的异常处理中,finally块的作用十九为了保证无论出现什么情况,finally块里面的代码一定会被执行.由于程序执行return就以为这结束对 ...