hdu_2604Queuing(快速幂矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604
Queuing
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4428 Accepted Submission(s): 1961

Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
4 7
4 8
2
1
用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)
所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂
构造一个矩阵。
用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)
所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂
构造一个矩阵: 
//快速幂矩阵
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Mat
{
int mat[][];
};
int m;
Mat operator *(Mat a, Mat b)
{
Mat c;
memset(c.mat,,sizeof(c.mat));
int i, j, k;
//这儿的顺序按照
for(i = ; i < ; i++)
for(j = ; j < ; j++)
for(k = ; k < ; k++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k]*b.mat[k][j])%m;
return c;
}
Mat multi(int n)//计算一个已知矩阵的n次方%m
{
Mat ans;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
if(i==j)
ans.mat[i][j] = ;
else ans.mat[i][j] = ;
} }
Mat a;
memset(a.mat,,sizeof(a.mat));
a.mat[][] = a.mat[][] = a.mat[][] = a.mat[][] = a.mat[][] = a.mat[][] = ; while(n>)
{
if(n&) ans = ans*a;
a = a*a;
n>>=;
}
return ans;
}
int main()
{
int n;
while(~scanf("%d%d",&n,&m))
{
if(n==) printf("%d\n",%m);
else if(n==) printf("%d\n",%m);
else if(n==) printf("%d\n",%m);
else if(n==) printf("%d\n",%m);
else
{
Mat t;
t = multi(n-);
int sol = ((t.mat[][]*)%m+(t.mat[][]*)%m+(t.mat[][]*)%m+(t.mat[][]*)%m)%m;
printf("%d\n",sol);
}
}
return ;
}
hdu_2604Queuing(快速幂矩阵)的更多相关文章
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- Number Sequence(快速幂矩阵)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 Number Sequence Time Limit: 2000/1000 MS (Java/O ...
- 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法
题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...
- 快速幂 & 矩阵快速幂
目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...
- jiulianhuan 快速幂--矩阵快速幂
题目信息: 1471: Jiulianhuan 时间限制: 1 Sec 内存限制: 128 MB 提交: 95 解决: 22 题目描述 For each data set in the input ...
- hiho #1143 : 骨牌覆盖问题·一 (运用快速幂矩阵)
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...
- 【数论】 快速幂&&矩阵快速幂
首先复习快速幂 #include<bits/stdc++.h> using namespace std; long long power(long long a,long long b,l ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- POJ 3734 Blocks(矩阵快速幂+矩阵递推式)
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 . 设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...
随机推荐
- windows server 2008 R2服务器安装IIS并添加网站
一.连接远程计算机 1.因为我的电脑是win7系统,故这里以win7为例,其他windows系统大同小异,首先点开开始菜单栏,在windows附件下找到远程桌面连接 或者采用通用的方法,利用快捷键wi ...
- 转战Hexo
从之前的转战farbox,到现在又转战Hexo,真是不折腾不成魔.要说farbox有什么不好,可能唯一的不好就是它要求与Dropbox关联吧,这对于大部分国内用户来说是无法接受的,写文章之前一想到还要 ...
- lua中易混淆函数
lua中易混淆的函数 ipairs和pairs: ipairs只能顺序遍历table,遇到key不是数字就会退出 pairs可以遍历table中所有元素 ----------------------- ...
- AntData.ORM框架 之 读写分离
环境准备 准备2台机器配置好Master Slaver模式 我是用vmware 2台虚拟机配置的.有需要请联系. Master:192.168.11.130 Slaver:192.168.11.133 ...
- ArcGIS API for JavaScript 4.2学习笔记[15] 弹窗内容的格式与自定义格式
先看结果截图吧(不看过程可以直接看总结,在文末): 随便点击了两个城市斑块,出现结果如图. 我来解读一下这结果和以前的有什么不同: 这个例子使用了PopupTemplate,数据是Layer(使用Po ...
- bzoj 1758: [Wc2010]重建计划
Description Input 第 一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案 ...
- 搭建eclipse+tomcat开发环境
JDK 1.6 Eclipse IDE For JEE Version Tomcat 6.0 tomcatPluginV33 //eclipse平台上的插件,但它并不是tomcat本身,需要安装独立 ...
- vue-router项目实战总结
今天来谈谈vue项目{vue,vue-router,component}三大神将之一的vue-router.作为我们前后端分离很重要的实践之一,router帮我们完成了SPA应用间的页面跳转. 并且, ...
- IT服务(运维)管理实施的几个要点--第二章 人员和组织架构
子曰"没有合适的人" 在流程化的管理模式下,最容易步入的一个误区是按流程设计一个"理想的"组织架构,然后对应于这个架构对人员进行评估.培养,甚至是更换.我见过很 ...
- Linux(CentOS6.5)修改系统市区被中国标准时间(北京时间)
本文地址http://comexchan.cnblogs.com/ ,作者Comex Chan,尊重知识产权,转载请注明出处,谢谢! 备份时区配置文件 cp /etc/localtime /etc/l ...