hdu_2604Queuing(快速幂矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604
Queuing
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4428 Accepted Submission(s): 1961

Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
4 7
4 8
2
1
用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)
所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂
构造一个矩阵。
用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)
所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂
构造一个矩阵:
//快速幂矩阵
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Mat
{
int mat[][];
};
int m;
Mat operator *(Mat a, Mat b)
{
Mat c;
memset(c.mat,,sizeof(c.mat));
int i, j, k;
//这儿的顺序按照
for(i = ; i < ; i++)
for(j = ; j < ; j++)
for(k = ; k < ; k++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k]*b.mat[k][j])%m;
return c;
}
Mat multi(int n)//计算一个已知矩阵的n次方%m
{
Mat ans;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
if(i==j)
ans.mat[i][j] = ;
else ans.mat[i][j] = ;
} }
Mat a;
memset(a.mat,,sizeof(a.mat));
a.mat[][] = a.mat[][] = a.mat[][] = a.mat[][] = a.mat[][] = a.mat[][] = ; while(n>)
{
if(n&) ans = ans*a;
a = a*a;
n>>=;
}
return ans;
}
int main()
{
int n;
while(~scanf("%d%d",&n,&m))
{
if(n==) printf("%d\n",%m);
else if(n==) printf("%d\n",%m);
else if(n==) printf("%d\n",%m);
else if(n==) printf("%d\n",%m);
else
{
Mat t;
t = multi(n-);
int sol = ((t.mat[][]*)%m+(t.mat[][]*)%m+(t.mat[][]*)%m+(t.mat[][]*)%m)%m;
printf("%d\n",sol);
}
}
return ;
}
hdu_2604Queuing(快速幂矩阵)的更多相关文章
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- Number Sequence(快速幂矩阵)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 Number Sequence Time Limit: 2000/1000 MS (Java/O ...
- 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法
题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...
- 快速幂 & 矩阵快速幂
目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...
- jiulianhuan 快速幂--矩阵快速幂
题目信息: 1471: Jiulianhuan 时间限制: 1 Sec 内存限制: 128 MB 提交: 95 解决: 22 题目描述 For each data set in the input ...
- hiho #1143 : 骨牌覆盖问题·一 (运用快速幂矩阵)
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...
- 【数论】 快速幂&&矩阵快速幂
首先复习快速幂 #include<bits/stdc++.h> using namespace std; long long power(long long a,long long b,l ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- POJ 3734 Blocks(矩阵快速幂+矩阵递推式)
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 . 设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...
随机推荐
- Python学习日记day3:数据类型
1.数据类型int :如1.2.4等, 用于计算 bool: True , False ,用户判断 str: 储存少量数据,进行操作.如:'fdasklfjfladfl','而而噩噩','1234' ...
- Python3.5:装饰器的使用
在Python里面函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数,简单来说函数也是变量也可以作文函数的参数 >>> def funA(): ... pr ...
- SSL/TLS通信
本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/31 复习基本概念 对称密码:加密和解密使用同一密匙. 公钥密码: ...
- /sbin/nologin 和 /bin/false 的区别
/bin/false是最严格的禁止login选项,一切服务都不能用,而/sbin/nologin只是不允许系统login,可以使用其他ftp等服务 如果想要用false在禁止login的同时允许ftp ...
- Zabbix自动发现java进程
一:简介 使用Python psutil模块,查找java模块,并获取启动命令,结合zabbix监控自动监控.点击下载 二:操作 发现脚本 #!/usr/bin/env python # coding ...
- CentOS7.2 使用Shell安装Oracle12c
一.操作系统说明 1.操作系统 版本 2.磁盘分区用量 二.安装必要的软件包 for pkg in 'binutils' 'compat-libcap1' 'compat-libstdc++-33' ...
- MySQL5.6中date和string的转换和比较
Conversion & Comparison, involving strings and dates in MySQL 5.6 我们有张表,表中有一个字段dpt_date,SQL类型为da ...
- 优化设计提高sql类数据库的性能
前言 在一个项目中,技术的统一性是最重要的,数据库的设计则是重点中的重点.NoSQL 是目前最流行的数据库,但是其实用性和功能性远不如sql数据库. 实际很多SQL数据库被诟病的性能问题大多是源于程序 ...
- shell脚本异步日志分析-接口耗时、可用率
背景:现有日志接入日志报表大盘,为了避免作业高峰期间(双十一),系统也要观测系统整体情况,因此提出了观测近五分钟,接口成功率以及耗时等工具(默认统计最近五分钟,并进行结果汇总统计) 使用说明 前提:p ...
- 高效的CSS代码(2)
——阅读笔记,欢迎纠错^_^ 内容比较零散..... 1.让浮动元素的父容器根据元素的高度而自适应高度的方法: <div class="clearfix"><di ...