4. Median of Two Sorted Arrays
Hard

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

You may assume nums1 and nums2 cannot be both empty.

Example 1:

nums1 = [1, 3]
nums2 = [2] The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 思路:

中位数,其实就是找到第k个大小的元素的特例。在单数组中实现方式简单,关键是如何在两个数组中找到第k大的元素。难就难在要在两个未合并的有序数组之间使用二分法,这里我们需要定义一个函数来找到第K个元素,由于两个数组长度之和的奇偶不确定,因此需要分情况来讨论,对于奇数的情况,直接找到最中间的数即可,偶数的话需要求最中间两个数的平均值。下面重点来看如何实现找到第K个元素,首先我们需要让数组1的长度小于或等于数组2的长度,那么我们只需判断如果数组1的长度大于数组2的长度的话,交换两个数组即可,然后我们要判断小的数组是否为空,为空的话,直接在另一个数组找第K个即可。还有一种情况是当K = 1时,表示我们要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可。

首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]大于B[k/2-1],则A[k/2-1]小于合并之后的第k小值。

证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。

同理当A[k / 2 - 1] > B[k / 2 -1]时存在类似的结论

当A[k / 2 - 1] = B[k / 2 -1]时,表示,在在A的k/2 -1之前已经有k/2 -1和数小于A[k / 2 -1],同理在B 之前也是一样的,所以此时已经找到了第k小的数,即这个相等的元素。

 class Solution {
public:
double findKth(vector<int>& nums1, int p1, vector<int>& nums2, int p2, int k){
int len1 = nums1.size(), len2 = nums2.size();
if(len1-p1>len2-p2){
return findKth(nums2,p2,nums1,p1,k);
}
if(len1==p1){
return nums2[p2+k-];
}
if(k==){
return min(nums1[p1],nums2[p2]);
}
int l1 = min(k/ + p1,len1), l2 = p2 + k - l1 + p1;;
int max1 = nums1[l1-], max2 = nums2[l2-];
if(max1==max2) return max1;
else if(max1<max2){
return findKth(nums1,l1,nums2,p2,k-l1+p1);
}
else {
return findKth(nums1,p1,nums2,l2,k-l2+p2);
}
}
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int len1 = nums1.size(),len2 = nums2.size();
if((len1+len2)%==){
return (findKth(nums1,,nums2,,(len1+len2)/)+findKth(nums1,,nums2,,(len1+len2+)/))/;
}
else{
return findKth(nums1,,nums2,,(len1+len2+)/);
}
}
};
#下面这个代码思路完全一样,加了一些注释,是来自别人的博客,附上原地址,感谢大佬:https://www.cnblogs.com/mini-coconut/p/9066508.html

 1 double findKth(vector<int> &nums1, int i, vector<int> &nums2, int j, int k)
{
// 首先需要让数组1的长度小于或等于数组2的长度
if (nums1.size() - i > nums2.size() - j) {
return findKth(nums2, j, nums1, i, k);
}
// 判断小的数组是否为空,为空的话,直接在另一个数组找第K个即可
if (nums1.size() == i) {
return nums2[j + k - ];
}
// 当K = 1时,表示我们要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可
if (k == ) {
return min(nums1[i], nums2[j]);
}
int pa = min(i + k / , int(nums1.size())), pb = j + k - pa + i; if (nums1[pa - ] < nums2[pb - ]) {
return findKth(nums1, pa, nums2, j, k - pa + i);
}
else if (nums1[pa - ] > nums2[pb - ]) {
return findKth(nums1, i, nums2, pb, k - pb + j);
}
else {
return nums1[pa - ];
}
}
double findMedianSortedArrays(vector<int> A, vector<int> B) {
int sizeA = A.size(), sizeB = B.size();
if (sizeA <= && sizeB <= ) {
return ;
}
int total = sizeA + sizeB;
if (total % == ) {
return findKth(A, , B, , total / + );
}
else {
return (findKth(A, , B, , total / ) + findKth(A, , B, , total / + )) / ;
}
}

这里比较难理解的点是判断(nums1[pa - 1] < nums2[pb - 1])之后执行了return findKth(nums1, pa, nums2, j, k - pa + i);其实这个操作是因为目前nums1的分界线的值小于nums2分界线的值,那么证明nums1分界线以及前面的值都小于合并后的第k的值,也就是中位数。那么我们可以从这里开始,继续寻找第k-(pa-i)的值,直到两个值相等为止。

Leetcode 4. Median of Two Sorted Arrays(中位数+二分答案+递归)的更多相关文章

  1. Leetcode 4. Median of Two Sorted Arrays(二分)

    4. Median of Two Sorted Arrays 题目链接:https://leetcode.com/problems/median-of-two-sorted-arrays/ Descr ...

  2. 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays

    一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...

  3. LeetCode(3) || Median of Two Sorted Arrays

    LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题 ...

  4. LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)

    题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 an ...

  5. LeetCode 4. Median of Two Sorted Arrays & 归并排序

    Median of Two Sorted Arrays 搜索时间复杂度的时候,看到归并排序比较适合这个题目.中位数直接取即可,所以重点是排序. 再来看看治阶段,我们需要将两个已经有序的子序列合并成一个 ...

  6. 第三周 Leetcode 4. Median of Two Sorted Arrays (HARD)

    4. Median of Two Sorted Arrays 给定两个有序的整数序列.求中位数,要求复杂度为对数级别. 通常的思路,我们二分搜索中位数,对某个序列里的某个数 我们可以在对数时间内通过二 ...

  7. LeetCode 004 Median of Two Sorted Arrays

    题目描述:Median of Two Sorted Arrays There are two sorted arrays A and B of size m and n respectively. F ...

  8. [LeetCode] 4. Median of Two Sorted Arrays 两个有序数组的中位数

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  9. leetcode 4 : Median of Two Sorted Arrays 找出两个数组的中位数

    题目: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the ...

随机推荐

  1. database 学习

    ref : 什么是NoSQL,为什么要使用NoSQL?

  2. kafka学习(三)

    kafka 消费者-从kafka读取数据   消费者和消费者群里 kafka消费者从属于消费者群组.一个群组里的消费者订阅的是同一主题,每个消费者接受主题一部分分区的消息.如果我们往群组里添加更多的消 ...

  3. 不容错过的 MySQL史上最全

    点击下方链接 http://c.biancheng.net/view/2361.html

  4. python字符串-方法

    一.1. upper()作用:将字符串中字符转换为大写 In [17]: spam Out[17]: 'hello,world' In [18]: print(spam.upper()) HELLO, ...

  5. C#打印条码BarTender SDK打印之路和离开之路(web平凡之路)(转)

    C#打印条码BarTender SDK打印之路和离开之路(web平凡之路) 从来没想过自己会写一篇博客,鉴于这次从未知的探索到一个个难点的攻破再到顺利打印,很想记录这些点滴,让后人少走弯路. 下面走进 ...

  6. android adb logcat获取日志文件

    一般情况,可以直接在电脑终端上输入logcat来查看手机运行日志,但是测试工作者为了抓取日志文件来给开发人员,需要把日志导出到特定文件中.如下文. 以小米1s手机为例 步骤1:打开第一个终端窗口 ad ...

  7. The kth great number

    The kth great number Problem Description Xiao Ming and Xiao Bao are playing a simple Numbers game. I ...

  8. LINQ 推迟查询的执行

    LINQ 在运行期间定义查询表达式时.查询就不会运行.查询会在迭代数据项是运行,例如: static void Main(string[] args) { List<string> lis ...

  9. 执行npm publish 报错:401 Unauthorized - PUT https://registry.npmjs.org/kunmomotest - You must be logged in to publish packages.

    前言 执行npm publish 报错:401 Unauthorized - PUT https://registry.npmjs.org/kunmomotest - You must be logg ...

  10. arcgis server10.2自带打印模板路径

    找到arcgis server10.2安装目录路径,我的安装路径为C盘,如下: C:\Program Files\ArcGIS\Server\Templates\ExportWebMapTemplat ...