题目描述

Consider a square map with N × N cells. We indicate the coordinate of a cell by (i, j), where 1 ≤ i, j ≤ N . Each cell has a color either white or black. The color of each cell is initialized to white. The map supports the operation
flip([xlow , xhigh], [ylow , yhigh]), which flips the color of each cell in the rectangle [xlow , xhigh] × [ylow , yhigh]. Given
a sequence of flip operations, our problem is to count the number of black cells in the final map. We illustrate this in the following example. Figure (a) shows the initial map. Next, we call flip([2, 4], [1, 3]) and obtain Figure (b). Then, we call flip([1, 5], [3, 5]) and obtain Figure (c). This map contains 18 black cells.

输入

The first line contains the number of test cases T (T < 10). Each test case begins with a line containing two integers N and K (1 < N, K < 10000), where N is the parameter of the map size and K is the number of flip operations. Each subsequent line corresponds to a flip operation, with four integers: xlow , xhigh, ylow , yhigh.

输出

For each test case, output the answer in a line.

样例输入

1
5 2
2 4 1 3
1 5 3 5

样例输出

18

题意:给你一个n*n的白色方块,然后有m次修改,其中每次询问修改一个矩形,这个矩形中的黑块变白,白快变黑,问最后有多少个黑块
思路:扫描线算法+线段树维护
代码如下:
#include <bits/stdc++.h>
using namespace std;
int read() {
char ch = getchar(); int x = 0, f = 1;
while(ch < '0' || ch > '9') {
if(ch == '-') f = -1;
ch = getchar();
} while('0' <= ch && ch <= '9') {
x = x * 10 + ch - '0';
ch = getchar();
} return x * f;
}
const int maxn = 1e5+500;
int n,m,tot=0;
int sum[maxn<<2],cnt[maxn<<2],tag[maxn<<2];
struct node
{
int x,y1,y2;
bool operator < (const node &p) const{return x<p.x;}
}qu[maxn<<1];
void pushup(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];//求当前行(线段树)中黑色的块数
cnt[rt]=cnt[rt<<1]+cnt[rt<<1|1];//cnt[i]是第i号节点代表区间内有多少块数
}
void pushdown(int rt)
{
tag[rt<<1]^=tag[rt];//tag标记黑白
tag[rt<<1|1]^=tag[rt];
sum[rt<<1]=cnt[rt<<1]-sum[rt<<1];//当前节点下白变黑,黑变白
sum[rt<<1|1]=cnt[rt<<1|1]-sum[rt<<1|1];
tag[rt]=0;
}
void build (int l,int r,int rt)
{
tag[rt]=0;
if (l==r){sum[rt]=0,cnt[rt]=1;return;}
int mid=(l+r)>>1;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
pushup(rt);
}
void update(int L,int R,int l,int r,int rt)
{
if (L<=l&&r<=R){
tag[rt]^=1;
sum[rt]=cnt[rt]-sum[rt];
return ;
}
int mid=(l+r)>>1;
if (tag[rt]) pushdown(rt);
if (L<=mid) update(L,R,l,mid,rt<<1);
if (mid+1<=R) update(L,R,mid+1,r,rt<<1|1);
pushup(rt);
}
int main()
{
int t=read();
while (t--){
n=read(),m=read();
tot = 0;
build(1,n,1);
while (m--){
int a=read(),b=read(),c=read(),d=read();
qu[++tot]=node{a,c,d};//将每个操作点拆成两个
if (b+1<=n) qu[++tot]=node{b+1,c,d};
//比如修改2<=x<=4,1<=y<=3的点转化为
//先修改2<=x<=+oo,1<=y<=3
//再修改5<=x<=+oo,1<=y<-3
//跟灯泡开关的原理一样,这样两个拆的操作与原来的操作是等价的
}
sort(qu+1,qu+1+tot);//将询问排序
/*for (int i=1;i<=tot;++i){
printf("%d %d %d\n",qu[i].x,qu[i].y1,qu[i].y2);
}*/
long long ret = 0;
int pos = 1;
for (int i=1;i<=n;++i){
while (pos<=tot&&qu[pos].x<=i){//当我们处理第i个询问时
update(qu[pos].y1,qu[pos].y2,1,n,1);
//如果还存在没有修改的操作,将它修改
pos++;
}
//printf("%d\n",sum[i]);
ret += sum[1];//如果在当前位置没有修改,那说明这一列与上一列情况一样直接加就行
}
printf("%lld\n",ret);
}
return 0;
}

  

 

2017 ICPC HongKong B:Black and White(扫描线+线段树)的更多相关文章

  1. 2017 ICPC西安区域赛 A - XOR (线段树并线性基)

    链接:https://nanti.jisuanke.com/t/A1607 题面:   Consider an array AA with n elements . Each of its eleme ...

  2. HDU 3642 - Get The Treasury - [加强版扫描线+线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  3. 【BZOJ3958】[WF2011]Mummy Madness 二分+扫描线+线段树

    [BZOJ3958][WF2011]Mummy Madness Description 在2011年ACM-ICPC World Finals上的一次游览中,你碰到了一个埃及古墓. 不幸的是,你打开了 ...

  4. HDU 3265/POJ 3832 Posters(扫描线+线段树)(2009 Asia Ningbo Regional)

    Description Ted has a new house with a huge window. In this big summer, Ted decides to decorate the ...

  5. 【bzoj4491】我也不知道题目名字是什么 离线扫描线+线段树

    题目描述 给定一个序列A[i],每次询问l,r,求[l,r]内最长子串,使得该子串为不上升子串或不下降子串 输入 第一行n,表示A数组有多少元素接下来一行为n个整数A[i]接下来一个整数Q,表示询问数 ...

  6. hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积

    题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...

  7. P3722 [AH2017/HNOI2017]影魔(单调栈+扫描线+线段树)

    题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l ...

  8. BZOJ 2584: [Wc2012]memory(扫描线+线段树)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2584 题意:给出平面n个线段,任意两个线段严格不相交,且每个线段不平行于坐标轴.移 ...

  9. [BZOJ 1218] [HNOI2003] 激光炸弹 【n logn 做法 - 扫描线 + 线段树】

    题目链接:BZOJ - 1218 题目分析 可以覆盖一个边长为 R 的正方形,但是不能包括边界,所以等价于一个边长为 R - 1 的正方形. 坐标范围 <= 5000 ,直接 n^2 的二维前缀 ...

随机推荐

  1. JSPDF 原理

    Jspdf是一个将html内容生成pdf文件的库,原理是对输入浏览器的文字或二进制图片进行base64编码转换,以pdf中应有的形式组织,最终以data uri scheme, data:applic ...

  2. 阶段1 语言基础+高级_1-3-Java语言高级_06-File类与IO流_04 IO字节流_7_字节输出流的续写和换行

    再执行一次.内容会追加在后面 换行 不同系统下的换行符号   每次都写上换行符号,在for循环里面,循环10次

  3. tensorflow学习笔记二:入门基础 好教程 可用

    http://www.cnblogs.com/denny402/p/5852083.html tensorflow学习笔记二:入门基础   TensorFlow用张量这种数据结构来表示所有的数据.用一 ...

  4. vue组件生命周期

    分为4个阶段:create/mount/update/destroy 每一个阶段都对应着有自己的处理函数 create: beforeCreate created 初始化 mount: beforeM ...

  5. 一个 Java 字符串到底有多少个字符?

    来源:http://dwz.win/jqd 依照Java的文档, Java中的字符内部是以UTF-16编码方式表示的,最小值是 \u0000 (0),最大值是\uffff(65535), 也就是一个字 ...

  6. dfs(找环)

    https://codeforces.com/problemset/problem/1249/B2 B2. Books Exchange (hard version) time limit per t ...

  7. POJ-2528 Mayor's posters (离散化, 线段树)

    题目传送门: POJ-2528 题意就是在一个高度固定的墙面上贴高度相同宽度不同的海报,问贴到最后还能看到几张?本质上是线段树区间更新问题,但是要注意的是题中所给数据范围庞大,直接搞肯定会搞出问题,所 ...

  8. servlet到springmvc的演进

    1.简单看看servlet 1.1.servlet继承关系 先看看下面servlet的这个继承关系,有点印象即可(可以暂时忽略ServletConfig,这个接口就是让我们可以从web.xml文件中拿 ...

  9. PHP实现简单的万年历

    <?php /*********************** *** 功能:万年历 *** *** 时间:2015/05/23 *** ***********************/ //1. ...

  10. Linux安装软件-CentOS和Ubuntu介绍

    开发十年,就只剩下这套架构体系了! >>>   不同Linux发行版的软件安装会有不同的方式,其中CentOS安装软件的主要方式是rpm和yum,Ubuntu可以使用apt-get, ...