Spark-Core RDD转换算子-双Value型交互
1、union(otherDataSet)
作用:求并集
. 对源 RDD 和参数 RDD 求并集后返回一个新的 RDD
scala> val rdd1 = sc.parallelize(1 to 6)
scala> val rdd2 = sc.parallelize(4 to 10)
scala> val rdd3 = rdd1.union(rdd2)
scala> rdd3.collect
res1: Array[Int] = Array(1, 2, 3, 4, 5, 6, 4, 5, 6, 7, 8, 9, 10)
union和++是等价的
2、subtract(otherDataSet)
作用: 差集.
从原 RDD 中减去 原 RDD 和otherDataset 中的共同的部分.
scala> rdd1.subtract(rdd2).collect
res4: Array[Int] = Array(1, 2, 3)
scala> rdd2.subtract(rdd1).collect
res5: Array[Int] = Array(7,8,9,10)
3、intersection(otherDataSet)
作用: 交集
. 对源 RDD 和参数 RDD 求交集后返回一个新的 RDD
scala> rdd1.intersection(rdd2).collect
res8: Array[Int] = Array(4, 6, 5)
4、cartesian(otherDataSet)
作用: 计算 2 个 RDD 的笛卡尔积.
尽量避免使用
scala> rdd1.cartesian(rdd2).collect
res11: Array[(Int, Int)] = Array((1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (1,7), (1,8), (1,9), (1,10), (2,7), (2,8), (2,9), (2,10), (3,7), (3,8), (3,9), (3,10), (4,4), (4,5), (4,6), (5,4), (5,5), (5,6), (6,4), (6,5), (6,6), (4,7), (4,8), (4,9), (4,10), (5,7), (5,8), (5,9), (5,10), (6,7), (6,8), (6,9), (6,10))
5、zip(otherDataSet)
作用: 拉链
操作. 需要注意的是, 在 Spark 中, 两个 RDD 的元素的数量和分区数都必须相同
, 否则会抛出异常.(在 scala 中, 两个集合的长度可以不同
)
其实本质就是要求的每个分区的元素的数量相同.
scala> val rdd1 = sc.parallelize(1 to 5)
scala> val rdd2 = sc.parallelize(11 to 15)
scala> rdd1.zip(rdd2).collect
res1: Array[(Int, Int)] = Array((1,11), (2,12), (3,13), (4,14), (5,15))
Spark-Core RDD转换算子-双Value型交互的更多相关文章
- 【Spark篇】---Spark中Transformations转换算子
一.前述 Spark中默认有两大类算子,Transformation(转换算子),懒执行.action算子,立即执行,有一个action算子 ,就有一个job. 通俗些来说由RDD变成RDD就是Tra ...
- Spark之 RDD转换成DataFrame的Scala实现
依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2. ...
- Spark-Core RDD转换算子-kv型
大多数的 Spark 操作可以用在任意类型的 RDD 上, 但是有一些比较特殊的操作只能用在key-value类型的 RDD 上. 这些特殊操作大多都涉及到 shuffle 操作, 比如: 按照 ke ...
- Spark-Core RDD转换算子-Value型
1. map(func) 作用: 返回一个新的 RDD, 该 RDD 是由原 RDD 的每个元素经过函数转换后的值而组成. 就是对 RDD 中的数据做转换. 创建一个包含1-10的的 RDD,然后将每 ...
- Spark中RDD转换成DataFrame的两种方式(分别用Java和Scala实现)
一:准备数据源 在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个s ...
- Spark 3.x Spark Core详解 & 性能优化
Spark Core 1. 概述 Spark 是一种基于内存的快速.通用.可扩展的大数据分析计算引擎 1.1 Hadoop vs Spark 上面流程对应Hadoop的处理流程,下面对应着Spark的 ...
- Spark Core知识点复习-1
Day1111 Spark任务调度 Spark几个重要组件 Spark Core RDD的概念和特性 生成RDD的两种类型 RDD算子的两种类型 算子练习 分区 RDD的依赖关系 DAG:有向无环图 ...
- 大数据技术之_27_电商平台数据分析项目_02_预备知识 + Scala + Spark Core + Spark SQL + Spark Streaming + Java 对象池
第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark ...
- 【Spark】RDD操作具体解释2——值型Transformation算子
处理数据类型为Value型的Transformation算子能够依据RDD变换算子的输入分区与输出分区关系分为下面几种类型: 1)输入分区与输出分区一对一型 2)输入分区与输出分区多对一型 3)输入分 ...
随机推荐
- 常见状态码StatusCode
当浏览者访问一个网页时,浏览者的浏览器会向网页所在服务器发出请求.当浏览器接收并显示网页前,此网页所在的服务器会返回一个包含HTTP状态码的信息头(server header)用以响应浏览器的请求. ...
- print的位置差异
第一种,for循环和print是同级的,只有当for循环结束了才会print d=[]for i in range(1, 101): d.append(i)print d[6::7] 第二种,也就是p ...
- java实现网页验证码功能_java - JAVA
文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 本文实例为大家分享了java网页验证码的实现代码,供大家参考,具体内容如下 Servlet: package cn.bd ...
- 转 弹性反向传播(RProp)和均方根反向传播(RMSProp)
from http://blog.csdn.net/tsq292978891/article/details/78619384 都是一种权值更新算法,类似于SGD算法,其中,RMSProp是RProp ...
- 使用tensorflow训练word2vec
from http://blog.csdn.net/wangyangzhizhou/article/details/77530479?locationNum=1&fps=1 使用了tensor ...
- 【织梦手机端仿站】和PC一个后台
卸载插件,织梦默认带手机站,无需复杂使用插件以后不方便升级.织梦2015年6月8日更新后,就添加了很多针对手机移动端的设计,最大的设计就是添加了生成二维码的织梦标签和织梦手机模板功能,织梦更新后,默认 ...
- Shoi2017试题泛做
一口气做完六个省的省选(误) Day1 [Shoi2017]期末考试 枚举最大的天数,然后代价贪心地O(1)计算. #include <cstdio> #include <algor ...
- Mysql 获取成绩排序后的名次
其实就是输出mysql的排序后的行号 RT:获取单个用户的成绩在所有用户成绩中的排名 可以分两步: 1.查出所有用户和他们的成绩排名 ) as rowNo from t_user, () ) ...
- Spring Cloud Stream教程(一)介绍Spring Cloud Stream
Spring Cloud Stream是构建消息驱动的微服务应用程序的框架.Spring Cloud Stream基于Spring Boot建立独立的生产级Spring应用程序,并使用Spring I ...
- 关于viewpager的滑动问题
今天碰到很诡异的问题,viewpager中放置至少三张图片的时候能够正常实现循环滑动,只放置一张或者两张的时候就不行. 后来发现问题症结:viewpager需要保证既可以向左滑动,又可以向右滑动,因此 ...