AcWing 286. 选课 (树形依赖分组背包)打卡
有依赖的背包
首先依赖的概念,就是一个东西依附与一个东西之上,我们想买附品的话必须要把主品先买下来,这个可以先做下这道题
https://www.cnblogs.com/Lis-/p/11047466.html
上面就讲到了主件和附件的概念,要想买附件就必须先买其主件
上面这个题最多只有两个附件,情况不多,所以可以直接枚举,现在依赖背包即是上面这个题改成是附件数量不限
每个分组策略数就太多了,主件+1附件 / 主件+2附件 / 主件+3附件 / 主件+4附件......
分组有个性质 他只能挑一种策略,所以我们可以利用这个性质,在一些情况中求一个最优情况,也就是 最优(主件+1附件) / 最优 (主件+2附件).......
我们可以利用01背包先求出在该分组内0-m的容量的最大值,这样的话策略数量就会大大减少
题目
学校实行学分制。
每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分。
学校开设了 N 门的选修课程,每个学生可选课程的数量 M 是给定的。
学生选修了这 M 门课并考核通过就能获得相应的学分。
在选修课程中,有些课程可以直接选修,有些课程需要一定的基础知识,必须在选了其他的一些课程的基础上才能选修。
例如《Windows程序设计》必须在选修了《Windows操作基础》之后才能选修。
我们称《Windows操作基础》是《Windows程序设计》的先修课。
每门课的直接先修课最多只有一门。
两门课可能存在相同的先修课。
你的任务是为自己确定一个选课方案,使得你能得到的学分最多,并且必须满足先修条件。
假定课程之间不存在时间上的冲突。
输入格式
输入文件的第一行包括两个整数N、M(中间用一个空格隔开)其中1≤N≤300,1≤M≤N1≤N≤300,1≤M≤N。
接下来N行每行代表一门课,课号依次为1,2,…,N。
每行有两个数(用一个空格隔开),第一个数为这门课先修课的课号(若不存在先修课则该项为0),第二个数为这门课的学分。
学分是不超过10的正整数。
输出格式
输出一个整数,表示学分总数。
输入样例:
7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2
输出样例:
13
题意:有依赖关系,不过这个明显是一个树形结构,所以这个也就是树形依赖背包,
思路:树形依赖呢不同与普通依赖
因为他的附件有可能也有附件,这个我们如果要算最顶层的依赖关系的话,我们应该把子树情况都给算出来,所以这里用到了树形dp,我们先到最底算出子树
的0-m的所有容量情况,然后再当前所有子树情况的父节点这里汇总得出一个最优值,自底向上得出根节点的最优
总的就是:自底向上的取算出所有节点的最优值然后再汇总在根节点
推荐博客:https://www.cnblogs.com/Roni-i/p/9427504.html
#include<bits/stdc++.h>
#define maxn 305
#define mod 1000000007
using namespace std;
typedef long long ll;
ll dp[maxn],val[maxn],f[maxn][maxn];
ll n,m;
vector<ll> mp[maxn];
void dfs(int x){
for(int i=;i<mp[x].size();i++){ //枚举子树节点(物品)
ll v=mp[x][i];
dfs(v);
for(int j=m;j>=;j--){ // 选择多少个节点(策略)(容量)
for(int k=m;k>=;k--){//枚举当前节点的分组
if(j>=k)
f[x][j]=max(f[x][j],f[x][j-k]+f[v][k]);
//else f[x][j]=max(f[x][j],f[v][j]);
}
}
}
if(x!=)
for(int i=m;i>=;i--){//当前节点的值肯定要取,所以不是取max
f[x][i]=f[x][i-]+val[x];
}
}
int main(){
cin>>n>>m;
ll x,y;
for(int i=;i<=n;i++){
cin>>x>>y;
mp[x].push_back(i);
val[i]=y;
}
dfs();
cout<<f[][m];
}
AcWing 286. 选课 (树形依赖分组背包)打卡的更多相关文章
- CSU - 1580 NCPC2014 Outing(树形依赖+分组背包)
Outing Input Output Sample Input 4 4 1 2 3 4 Sample Output 4 分组背包: for 所有的组k for v=V..0 for 所有的i属于组k ...
- HDU-1011 Starship Troopers (树形DP+分组背包)
题目大意:给一棵有根带点权树,并且给出容量.求在不超过容量下的最大权值.前提是选完父节点才能选子节点. 题目分析:树上的分组背包. ps:特判m为0时的情况. 代码如下: # include<i ...
- Ural-1018 Binary Apple Tree(树形dp+分组背包)
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #i ...
- hdu 1561 树形dp+分组背包
题意:就是给定n个点,每个地点有value[i]的宝物,而且有的宝物必须是另一个宝物取了才能取,问取m个点可以获得的最多宝物价值. 一个子节点就可以返回m个状态,每个状态表示容量为j(j<=m) ...
- HDU4003Find Metal Mineral[树形DP 分组背包]
Find Metal Mineral Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Other ...
- hdu1561 The more, The Better 树形DP+分组背包
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1561 思路: 典型的树形背包题目: 定义dp[i][j]表示以i为根节点,攻打j个城堡的获得的财宝的最 ...
- 【P2015】二叉苹果树 (树形DP分组背包)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是 ...
- poj2486 Apple Tree (树形dp+分组背包)
题目链接:https://vjudge.net/problem/POJ-2486 题意:一棵点权树,起点在1,求最多经过m条边的最大点权和. 思路: 树形dp经典题.用3维状态,dp[u][j][0/ ...
- hdu 4003 树形dp+分组背包 2011大连赛区网络赛C
题意:求K个机器人从同一点出发,遍历所有点所需的最小花费 链接:点我 Sample Input 3 1 1 //3个点,从1出发,1个机器人 1 2 1 1 3 1 3 1 2 1 2 1 1 3 1 ...
随机推荐
- http协议和file协议的区别
1.在本地直接使用浏览器打开 html文件 和 通过本地服务器打开 html文件 有什么区别呢. https://segmentfault.com/q/1010000006554881/a-1 ...
- linux之-mysql数据库约束3
在MySQL中,通常有这几种约束: DROP DATABASE mysql_shiyan;删除数据库 主键 (PRIMARY KEY)是用于约束表中的一行,作为这一行的唯一标识符,在一张表中通过主键就 ...
- phhstrom 快捷键
TODO(表示待办事件)注释 快捷键 Alt+6 Alt+6 可以查看添加了//TODO注释的代码片段 一般我们在开发过程中由于时间或者各方面的时间来不及完成的代码,往往会先将逻辑写出来,实现留待以后 ...
- upc组队赛14 Evolution Game【dp】
Evolution Game 题目描述 In the fantasy world of ICPC there are magical beasts. As they grow, these beast ...
- mysql与python连接学习
1 问题: pip install MySQLClient 遇到 error: Microsoft Visual C++ 14.0 is required. Get it with "Mi ...
- 06、python的基础-->编码小知识
1.编码类型ascii A : 00000010 8位 一个字节 unicode A : 00000000 00000001 00000010 00000100 32位 四个字节 中:00000000 ...
- shell编程:向函数中传递参数
cal.sh sh cal.sh 20 + 10 实现这样传参的函数(shell不是一个严谨的编程语言,参数这种是不用定义的,函数中直接引用,shell执行中直接写) #!/bin/bash # ca ...
- 【题解】Tom的烦恼
题目描述 Tom是一个非常有创业精神的人,由于大学学的是汽车制造专业,所以毕业后他用有限的资金开了一家汽车零件加工厂,专门为汽车制造商制造零件.由于资金有限,他只能先购买一台加工机器.现在他却遇到了麻 ...
- elementUI 的el-pagination 分页功能
<div class="block1"> <el-pagination @size-change="handleSizeChange" @cu ...
- C# FTP操作代码实现
C# FTP 实现方式,废话不多说,直接上代码 public class FtpClient { #region 构造函数 /// <summary> /// 创建FTP工具 /// & ...