device:

用最小公倍数的知识或是画网格模拟转移,神仙们也可以找规律。然后就变成区间覆盖了。

忘记特殊情况了,大众分→Ag

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long i64;
const int N=2e6+;
const i64 INF=1e18+; struct sgm{
i64 x,y;
bool operator<(const sgm a)const{
return x<a.x||x==a.x&&y<a.y;
}
}t[N];
int cnt; i64 gcd(i64 n,i64 m){
while(n%m){
swap(n,m);
m%=n;
}
return m;
} int main()
{
int n,i;
i64 a,b,x,y;
scanf("%d%lld%lld",&n,&a,&b);
i64 l;
if(a/gcd(a,b+)>=(double)INF/b)
l=INF;
else
l=a/gcd(a,b+)*b;
for(i=;i<=n;i++){
scanf("%lld%lld",&x,&y);
if(y-x+>=l){  //我怎么就这么睿智(
printf("%lld",l);
return ;
}
else{
x%=l,
y%=l;
if(x<=y){
++cnt,
t[cnt].x=x,
t[cnt].y=y;
}
else{
++cnt,
t[cnt].x=,
t[cnt].y=y;
++cnt,
t[cnt].x=x,
t[cnt].y=l-;
}
}
}
sort(t+,t+cnt+);
x=t[].x,
y=t[].y;
i64 s=;
for(i=;i<=cnt;i++)
if(t[i].x>y){
s+=y-x+;
x=t[i].x,
y=t[i].y;
}
else
y=max(y,t[i].y);
s+=y-x+;
printf("%lld",s);
return ;
}

bridges:

分块

lamps:

不会做咕咕咕

APIO2019的更多相关文章

  1. APIO2019&&THUSC2019游记

    APIO2019懵十三记: day0: 早上和ljx从沈阳出发,下午一点到的首师大附. 由于工作人员中午十二点就散了,我们就先去试机了. 下午三点接到狗牌和T恤,晚上买麦当劳回如意吃. 晚上还有场模拟 ...

  2. 【LOJ#3146】[APIO2019]路灯(树套树)

    [LOJ#3146][APIO2019]路灯(树套树) 题面 LOJ 题解 考场上因为\(\text{bridge}\)某个\(\text{subtask}\)没有判\(n=1\)的情况导致我卡了\( ...

  3. 【LOJ#3145】[APIO2019]桥梁(分块,并查集)

    [LOJ#3145][APIO2019]桥梁(分块,并查集) 题面 LOJ 题解 因为某个\(\text{subtask}\)没判\(n=1\)的情况导致我自闭了很久的题目... 如果没有修改操作,可 ...

  4. 【LOJ#3144】[APIO2019]奇怪装置(数论)

    [LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...

  5. 【LG5444】[APIO2019]奇怪装置

    [LG5444][APIO2019]奇怪装置 题面 洛谷 题目大意: 给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\fr ...

  6. APIO2019简要题解

    Luogu P5444 [APIO2019]奇怪装置 看到这种题,我们肯定会想到\((x,y)\)一定有循环 我们要找到循环节的长度 推一下发现\(x\)的循环节长为\(\frac{AB}{B+1}\ ...

  7. THUPC2019/CTS2019/APIO2019/PKUSC2019游记

    THUPC2019/CTS2019/APIO2019/PKUSC2019游记 5.10 中铺,火车好晃啊 5.11 打了THUPC2019的练习赛,华容道好评(四个小兵,杠鸭!) 5.12 打了THU ...

  8. APIO2019 题解

    APIO2019 题解 T1 奇怪装置 题目传送门 https://loj.ac/problem/3144 题解 很容易发现,这个东西一定会形成一个环.我们只需要求出环的长度就解决了一切问题. 设环的 ...

  9. [APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释)

    [APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释) 题面 略 分析 考试的时候就感觉子任务4是突破口,结果却写了个Kruskal重构树,然后一直想怎么在线用数据结构维护 实 ...

  10. [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)

    [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...

随机推荐

  1. 服务化改造的云上利器 | 阿里云 EDAS 重大升级发布

    11月22日,广东云栖大会企业级互联网架构专场上,阿里云发布了全新版本的企业级分布式应用服务EDAS. 新版本增强了对主流微服务框架的原生支持,实现SpringCloud & Dubbo用户代 ...

  2. LCD驱动程序架构和分析

    一.LCD驱动程序架构 1.裸机驱动代码分析 ①LCD初始化:控制器初始化,端口初始化,指明帧缓冲 ②LCD图形显示:将图形数据写入帧缓冲 void lcd_init() { lcd_port_ini ...

  3. 【Java架构:基础技术】一篇文章搞掂:Idea

    一.使用技巧 1.1.配置Maven 打开File-Settings打开设置界面 1.2.配置JDK JDK可以设置默认版本,也可以设置针对某个项目 分别对应File-Other Setting-De ...

  4. 能打开电脑都看懂的系列之Windows下修改MongoDB用户密码

    起因 还能怎么滴,我忘了MongoDB的密码呗. 操作 进入MongoDB的安装目录的bin目录下,(我的目录是D:\developer\MongoDB\Server\4.2\bin): 用记事本打开 ...

  5. 【转】JMX之ObjectName

    原文链接:https://blog.csdn.net/yunlong34574/article/details/46563187 ObjectName 就是存储了一个domain(域)下的一些属性,属 ...

  6. 2019 ACM-ICPC 南京 现场赛 H. Prince and Princess

    题意 王子想要娶公主,但是需要完成一个挑战:在一些房间中找出公主在哪. 每个房间有一个人,他们彼此知道谁在哪个房间.可以问他们三种问题: 你是谁? 在某个房间是谁? 公主在哪个房间? 有三类人,一类一 ...

  7. IOU计算python实现

    def compute_iou(rec1, rec2): """ computing IoU :param rec1: (y0, x0, y1, x1), which r ...

  8. 打开myeclipse出现这个错是为什么

  9. git清理工作区

    git clean -f 这将删除所有未被追踪的文件 git rev-list

  10. loj6626 幼儿园唱歌题

    题目 不难想到把\(S\)的反串\(S^R\)接到\(S\)后面,这样就可以把\(S[l_1,r_1]\)的前缀转化为\(S^R[n-r_1+1,n-l_1+1]\)的后缀 回文树上两节点的lca就是 ...