题目大意

现在你面前有n个物品,编号分别为1,2,3,……,n。你可以在这当中任意选择任意多个物品。其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益;但是,你选择该物品以后选择的所有物品的收益都会减少Ri。现在请你求出,该选择哪些物品,并且该以什么样的顺序选取这些物品,才能使得自己获得的收益最大。

注意,收益的减少是会叠加的。比如,你选择了第i个物品,那么你就会获得了Wi的收益;然后你又选择了第j个物品,你又获得了Wj-Ri收益;之后你又选择了第k个物品,你又获得了Wk-Ri-Rj的收益;那么你获得的收益总和为Wi+(Wj-Ri)+(Wk-Ri-Rj)。

题解

洛谷P1417

只不过在计算答案贡献时,发现正序枚举的时间复杂度是 \(O(N^3)\),即:决策的时间复杂度达到了 \(O(N)\)。在这里可以采用对物品进行逆向排序,这样每次选择的时候,将当前决策的物品作为第一个选择的物品,可以发现,这对后面物品对答案的贡献减少了 \(val*(j-1)\),即可在 \(O(1)\) 决策。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=3010; int n,dp[maxn][maxn];
struct node{int r,w;}a[maxn];
bool cmp(const node &x,const node &y){
return x.r>y.r;
} void read_and_parse(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d",&a[i].w,&a[i].r);
sort(a+1,a+n+1,cmp);
}
void solve(){
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+a[i].w-(j-1)*a[i].r);
int ans=0;
for(int i=1;i<=n;i++)ans=max(ans,dp[n][i]);
printf("%d\n",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P2647】最大收益的更多相关文章

  1. 洛谷P2647 最大收益

    P2647 最大收益 题目描述 现在你面前有n个物品,编号分别为1,2,3,……,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的 ...

  2. 洛谷 P2647 最大收益

    我是题面 恩,贪心,鉴定完毕. 一个物品是否放进来,取决于它是否能对答案做出贡献. 那物品i的贡献就是\(w[i]-r[i]\) 可是收益的减少是会叠加的 那就是\(w[i]-j*r[i]\),j表示 ...

  3. 洛谷—— P2647 最大收益

    https://www.luogu.org/problem/show?pid=2647 题目描述 现在你面前有n个物品,编号分别为1,2,3,……,n.你可以在这当中任意选择任意多个物品.其中第i个物 ...

  4. 洛谷 P2647 最大收益 题解

    题面 对于“n个物品选任意个”我们就可以想到一种递推方法,即设f[i][j]表示前i个物品选j个的最大收益 我们发现正着转移并不好转移,我们可以倒着转移,使选择的当前第i号物品为第一个物品,这样的话我 ...

  5. 洛谷P4307 球队收益

    题意:有n个球队,m场比赛. 每个球队都已经有些胜负场次了. 每个球队的收益为Ci * wini2 - Di * losei2. 求最小可能总收益. 解: 先看出一个模型:用一流量代表一个胜场,每场比 ...

  6. 洛谷 P3410 拍照

    洛谷 P3410 拍照 题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. ...

  7. 洛谷P4014 分配问题【最小/大费用流】题解+AC代码

    洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的 ...

  8. 洛谷 P2762 太空飞行计划问题 P3410 拍照【最大权闭合子图】题解+代码

    洛谷 P2762 太空飞行计划问题 P3410 拍照[最大权闭合子图]题解+代码 最大权闭合子图 定义: 如果对于一个点集合,其中任何一个点都不能到达此集合以外的点,这就叫做闭合子图.每个点都有一个权 ...

  9. BZOJ1855或洛谷2569 [SCOI2010]股票交易

    一道单调队列优化\(DP\) BZOJ原题链接 洛谷原题链接 朴素的\(DP\)方程并不难想. 定义\(f[i][j]\)表示到第\(i\)天,手上持有\(j\)股时的最大收益. 转移方程可以分成四个 ...

随机推荐

  1. BurpSuite(二) proxy 模块

      Proxy代理模块作为BurpSuite的核心功能,拦截HTTP/S的代理服务器,作为一个在浏览器和目标应用程序之间的中间人,允许你拦截,查看,修改在两个方向上的原始数据流. Burp 代理允许你 ...

  2. nginx不记录指定文件类型日志

    1.指定记录文件日志记录的内容. vim /usr/local/nginx/conf/nginx.conf如下部分: log_format dd '$remote_addr $http_x_forwa ...

  3. AJAX中同步和异步的区别和使用场景

    一.简介Ajax请求最重要的问题是代码执行的顺序.最长遇到的问题是,我们定义一个变量接收ajax异步请求的返回结果,后续代码使用,然而后续代码在使用时该变量为初始值,始终得不到想要的结果!!!二.示例 ...

  4. 关于Anaconda3 (64-bit)的一些体验

    最近因为在学习数据分析,所以安装了Anaconda3 (64-bit),最新版,支持py3.7 优点:自带了720个库(官方宣布),自带notebook,spyder.不用自己再去pip各种库了(基本 ...

  5. LeetCode.1022-根到叶路径二进制数之和(Sum of Root To Leaf Binary Numbers)

    这是小川的第381次更新,第410篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第243题(顺位题号是1022).给定二叉树,每个节点值为0或1.每个根到叶路径表示以最高 ...

  6. python关键字以及含义,用法

    Python常用的关键字   1.and , or and , or 为逻辑关系用语,Python具有短路逻辑,False and 返回 False 不执行后面的语句, True or 直接返回Tru ...

  7. flask config笔记

    #从flask这个包中导入Flask这个类 #Flask这个类是项目的核心,以后很多操作都是基于这个类的对象 #注册url.注册蓝图等都是基于这个类的对象 from flask import Flas ...

  8. for循环练习题:拆解字符并输入下标

    test = input('请输入:') for item in range(0,len(test)): print(item,test[item])

  9. ansible-playbook 案例

    nginx的安装 编写nginx的自动部署文件nginx.yml      hosts主机更改为自己定义的 访问目标主机组的IP地址,查看测试页面 测试页面:显示的是本机ip 1 <h1> ...

  10. [转帖]软件的变革与 AOT

    软件的变革与 AOT https://www.colabug.com/851475.html 文章写的很牛B .. 前言 AOT 即 Ahead of Time Compilation,即运行前编,与 ...