[Codeforces 464E] The Classic Problem(可持久化线段树)

题面

给出一个带权无向图,每条边的边权是\(2^{x_i}(x_i<10^5)\),求s到t的最短路\(\mathrm{mod} \ 10^9+7\)的值

分析

显然边权存不下,由于取模会影响大小关系,不能直接取模然后跑dijkstra

考虑用可持久化线段树维护每个点到起点的距离(二进制表示),即维护一个01序列,[1,n]从低位到高位存储。

修改的时候我们要把第i位+1,如果第i位是0,直接取反就可以了。但是第i位是1的时候不仅要取反,还要进位。这里可以直接暴力把连续的一段0改成1。理论上会被卡但这题的数据比较水,不被卡的做法参考cf官方题解

另外dijkstra算法中需要比较dist值大小,从高到低比较二进制的每一位。可以维护区间hash值,查询的时候在线段树上二分。如果右区间[mid+1,r]的hash值相同,就递归比较[l,mid],否则比较[mid+1,r].

具体见代码

代码

//http://codeforces.com/problemset/problem/464/E
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#define maxn 500000
#define maxm 500000
#define maxlog 25
#define mod 1000000007
#define INF 0x3f3f3f3f
using namespace std;
int n,m,dg;//dg是二进制位数
long long pow2[maxn+5];
struct segment_tree{//主席树维护二进值位 ,下标[1,n]从低位到高位存储二进制
#define lson(x) tree[x].ls
#define rson(x) tree[x].rs
struct node{
int ls;
int rs;
long long sum;//二进制值取模mod之后的值
//既可以用来更新答案,也可以当做hash判断两端二进制是否相等
}tree[maxn*maxlog+5];
int ptr;
void push_up(int x,int l,int r){
int mid=(l+r)>>1;
tree[x].sum=tree[lson(x)].sum+tree[rson(x)].sum*pow2[mid-l+1]%mod;
tree[x].sum%=mod;
}
int insert(int &x,int last,int upos,int l,int r){
x=++ptr;
tree[x]=tree[last];
if(l==r){
tree[x].sum^=1;//+1,1变0,0变1,进位等下再处理
return tree[last].sum;
}
int mid=(l+r)>>1;
int res;
if(upos<=mid){
//upos<=mid,处理进位,[mid+1,r]对应的高位也会被进位,所以要递归下去修改
//考虑极端情况,xi都=1,那么需要进位O(m/2+m/4+m/8+...+1)≈O(m)
res=insert(tree[x].ls,tree[last].ls,upos,l,mid);
//如果res不等于0,说明之前[l,mid]就有值,要继续进位
if(res) res=insert(tree[x].rs,tree[last].rs,upos,mid+1,r);
}else{
res=insert(tree[x].rs,tree[last].rs,upos,mid+1,r);
}
push_up(x,l,r);
return res;
}
bool cmp(int x,int y,int l,int r){//比较x,y两棵主席树对应的二进制大小
if(l==r){
return tree[x].sum<tree[y].sum;
}
int mid=(l+r)>>1;
if(tree[tree[x].rs].sum==tree[tree[y].rs].sum) return cmp(tree[x].ls,tree[y].ls,l,mid);//从高位到低位,高位相同就比低位
else return cmp(tree[x].rs,tree[y].rs,mid+1,r);
}
#undef lson
#undef rson
}T; struct edge{
int from;
int to;
int next;
int len;
}E[maxm*2+5];
int head[maxn+5];
int ecnt=1;
void add_edge(int u,int v,int w){
ecnt++;
E[ecnt].from=u;
E[ecnt].to=v;
E[ecnt].len=w;
E[ecnt].next=head[u];
head[u]=ecnt;
} struct heap_node{
int id;
int rt;//对应二进制主席树的树根
heap_node(){ }
heap_node(int _id,int _rt){
id=_id;
rt=_rt;
}
friend bool operator < (heap_node p,heap_node q){
return !T.cmp(p.rt,q.rt,0,dg);
}
};
priority_queue<heap_node>q;
int vis[maxn+5];
int disrt[maxn+5];
int pre[maxn+5];
long long dijkstra(int s,int t){
memset(disrt,0x3f,sizeof(disrt));
disrt[s]=0;
q.push(heap_node(s,disrt[s]));
while(!q.empty()){
heap_node x=q.top();
q.pop();
if(vis[x.id]) continue;
vis[x.id]=1;
for(int i=head[x.id];i;i=E[i].next){
int y=E[i].to;
int tmprt;
T.insert(tmprt,disrt[x.id],E[i].len,0,dg);
if(disrt[y]==INF||T.cmp(tmprt,disrt[y],0,dg)){
disrt[y]=tmprt;
pre[y]=i;
q.push(heap_node(y,disrt[y]));
}
}
}
if(disrt[t]==INF) return -1;
else return T.tree[disrt[t]].sum;
} int cnt=0;
int res[maxn+5];
void get_ans(int s,int t){
int x=t;
while(x!=s){
res[++cnt]=x;
x=E[pre[x]].from;
}
res[++cnt]=x;
} int main(){
int u,v,w;
int s,t;
scanf("%d %d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d %d %d",&u,&v,&w);
add_edge(u,v,w);
add_edge(v,u,w);
dg=max(dg,w);
}
scanf("%d %d",&s,&t); dg+=log2(m)+1;//进位
pow2[0]=1;
for(int i=1;i<=dg;i++) pow2[i]=pow2[i-1]*2%mod; long long ans=dijkstra(s,t);
printf("%I64d\n",ans);
if(ans==-1) return 0; cnt=0;
get_ans(s,t);
printf("%d\n",cnt);
for(int i=cnt;i>=1;i--){
printf("%d ",res[i]);
}
}

[Codeforces 464E] The Classic Problem(可持久化线段树)的更多相关文章

  1. Codeforces 464E The Classic Problem (最短路 + 主席树 + hash)

    题意及思路 这个题加深了我对主席树的理解,是个好题.每次更新某个点的距离时,是以之前对这个点的插入操作形成的线段树为基础,在O(logn)的时间中造出了一颗新的线段树,相比直接创建n颗线段树更省时间. ...

  2. UOJ#77. A+B Problem [可持久化线段树优化建边 最小割]

    UOJ#77. A+B Problem 题意:自己看 接触过线段树优化建图后思路不难想,细节要处理好 乱建图无果后想到最小割 白色和黑色只能选一个,割掉一个就行了 之前选白色必须额外割掉一个p[i], ...

  3. 【BZOJ3218】a + b Problem 可持久化线段树优化建图

    [BZOJ3218]a + b Problem 题解:思路很简单,直接最小割.S->i,容量为Bi:i->T,容量为Wi:所有符合条件的j->new,容量inf:new->i, ...

  4. Codeforces 464E The Classic Problem(主席树+最短路+哈希,神仙题)

    题目链接 题意:给出一张 \(n\) 个点 \(m\) 条边的无向图,第 \(i\) 条边连接 \(u_i,v_i\),边权为 \(2^{w_i}\),求 \(s\) 到 \(t\) 的最短路. \( ...

  5. CodeForces 464E The Classic Problem | 呆克斯歘 主席树维护高精度

    题意描述 有一个\(n\)点\(m\)边的无向图,第\(i\)条边的边权是\(2^{a_i}\).求点\(s\)到点\(t\)的最短路长度(对\(10^9 + 7\)取模). 题解 思路很简单--用主 ...

  6. Codeforces 464E. The Classic Problem

    题目大意 给定一张$n$个点, $m$条边的无向图,求$S$ 到$T$的最短路,其中边权都是$2^k$的形式$n,m,k<=10^5$,结果对$10^9+7$取模 题解 大佬好厉害 跑一边dij ...

  7. BZOJ 3489 A simple rmq problem(可持久化线段树)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3489 题意:一个数列.每次询问一个区间内出现一次的最大的数字是多少. 思路:设la ...

  8. BZOJ 3218 A + B Problem (可持久化线段树+最小割)

    做法见dalao博客 geng4512的博客, 思路就是用线段树上的结点来进行区间连边.因为有一个只能往前面连的限制,所以还要可持久化.(duliu) 一直以来我都是写dinicdinicdinic做 ...

  9. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

随机推荐

  1. box-shadow四个边框设置阴影样式

    其实对于box-shadow,老白我也是一知半解,之前用的时候直接复制已有的,也没有仔细思考过box-shadow的数值分别对应什么,最后导致阴影的边如何自由控制,苦于懒人一个一直没有正式去学习,今天 ...

  2. Python subprocess ffmpeg

    # -*- coding:utf-8 -*- import os, sys, getopt import numpy as np import subprocess as sp import cv2 ...

  3. 关于print的一点秀操作

    我们在玩 Python 的时候 常常会使用到 print 这个函数 主要用它来打印一些输出 这样我们可以更加方便的知道 程序的运行情况 我们常常这样操作   不过不是很骚 有时候我们想更加直观的看到我 ...

  4. jvm监控和诊断工具

    大牛写的Java的OOM Killer:https://www.jianshu.com/p/4645254be259 强烈推荐 总的参考链接:https://cloud.tencent.com/dev ...

  5. Spring Cloud Stream监听已存在的Queues/Exchanges

    环境准备 rabbitmq已运行,端口5672,控制台web端口15672,用户名密码guest/guest 引入spring cloud stream依赖 compile('org.springfr ...

  6. 【学习】004 java并发包

    并发包[jdk1.7] 同步容器类 Vector与ArrayList区别 1.ArrayList是最常用的List实现类,内部是通过数组实现的,它允许对元素进行快速随机访问.数组的缺点是每个元素之间不 ...

  7. ps:点阵格式图像

    我们所看到的图像,究竟是如何构成的呢?这就需要涉及到图像类型的概念. 电脑中的图像类型分为两大类,一类称为点阵图,一类称为矢量图. 点阵图顾名思义就是由点构成的,如同用马赛克去拼贴图案一样,每个马赛克 ...

  8. springboot2.0整合redis的发布和订阅

    1.Maven引用 <dependency> <groupId>org.springframework.boot</groupId> <artifactId& ...

  9. 【leetcode】1046. Last Stone Weight

    题目如下: We have a collection of rocks, each rock has a positive integer weight. Each turn, we choose t ...

  10. Guid--调用Guid.genID();

    package com.ufgov.ar.common.util; import java.net.InetAddress; /** * <p> * Title: 产生唯一标识 /** * ...