题目描述

红晕爬上了白玫瑰的花瓣,花刺还没有到达夜莺的心脏,玫瑰的心依旧苍白如终年不化的积雪。由生命铸就的玫瑰不允许存在一丝一毫的瑕疵,假设玫瑰的一片花瓣可以抽象成一个点,一朵玫瑰我们用一个$N\times M$的点阵表示,任意选择其中两个点可以构造出一条$"dead\ line"$。我们需要知道,对于一朵玫瑰,有多少条不同的$"dead\ line"$。两
条$"dead\ line"$不同当且仅当它们不重合,即两条$"dead\ line"$的交点数是有穷的。


输入格式

第一行一个正整数$T$表示数据组数,接下来$T$行,每行两个正整数$N,M$,意义如题。


输出格式

共$T$行,表示这一组数据的答案,答案对$2^{30}$取模。


样例

样例输入:

4
22
7 10
23 34
100 100

样例输出:

6
1111
139395
22791174


数据范围与提示

对于$40%$的数据T≤5,2≤N,M≤40$
对于另外$20%的数据T≤10,2≤N,M≤200$
对于$100%$的数据$T≤10,000,2≤N,M≤4,000$


题解

首先,解释一下题意,$"dead\ line"$是直线,而不是线段。

也就是对于下面这张图,所有的线段是:

所以,我们先来考虑朴素算法。

那么我们发现,只有那些长和宽的$GCD$为$1$的矩形才有可能对答案造成贡献。

但是这样会有重复的,所以我们还要减去$GCD$为$2$的矩形的数量。

也就是说答案是:$\sum \limits_{i=1}^{n-1}\sum \limits_{j=1}^{m-1}[gcd(i,j)=1]((n-i)(m-j)-\max(n-2\times i,0)\times \max(m-2\times j,0))$

$60\%$算法:

每次暴力求上面那个式子。

时间复杂度:$\Theta(T\times n\times m)$。

期望得分:$60$分。

实际得分:$60$分。

$100\%$算法$1$:

通过前缀和预处理出来答案,然后$\Theta(1)$查询即可。

时间复杂度:$\Theta(T+4000\times 4000)$。

期望得分:$100$分。

实际得分:$100$分。

$100\%$算法$2$:

我也不太会,大概讲两句:

化简?上面那个式子:

$\sum \limits_{i=1}^{n-1}\sum \limits_{j=1}^{m-1}[gcd(i,j)=1]((n-i)(m-j)-\max(n-2\times i,0)\times \max(m-2\times j,0)) \\ =\sum \limits_{i=1}^{n-1}\sum \limits_{j=1}^{m-1}\sum \limits_{d|gcd(i,j)}\mu (d)\times ((n-i)(m-j)-\max(n-2\times i,0)\times \max(m-2\times j,0)) \\ =\sum \limits_{d=1}{n-1}\mu (d)\times \sum \limits_{i=1}^{\left \lfloor \dfrac{n-1}{d} \right \rfloor}\sum \limits_{j=1}^{\left \lfloor \dfrac{m-1}{d} \right \rfloor}\sum \limits_{x=1}^{n-i\times d}\sum \limits_{y=1}^{m-j\times d}[x\leqslant i\times d\ or\ y\leqslant j\times d] \\ =\sum \limits_{d=1}^{n-1}\mu (d)\times \sum \limits_{i=1}^{\left \lfloor \dfrac{n-1}{d} \right \rfloor}\sum \limits_{j=1}^{\left \lfloor \dfrac{m-1}{d} \right \rfloor}(\sum \limits_{x=1}^{n-i\times d}[x\leqslant i\times d]\times (m-j\times d)) \\ +(\sum \limits_{y=1}^{m-j\times d}[y\leqslant j\times d]\times (n-i\times d)) \\ -(\sum \limits_{x=1}^{n-i\times d}\sum \limits_{y=1}^{m-i\times d}[x\leqslant i\times d\ and\ y\leqslant j\times d]) \\ =\sum \limits_{d=1}^{n-1}\mu (d)\times (\sum \limits_{i=1}^{\left \lfloor \dfrac{n-1}{d}\right \rfloor}\sum \limits_{x=1}^{n-i\times d}[x\leqslant i\times d]\times \sum \limits_{j=1}^{\left \lfloor \dfrac{m-1}{d}\right \rfloor}(m-j\times d)) \\ +(\sum \limits_{j=1}^{\left \lfloor \dfrac{m-1}{d} \right \rfloor}\sum \limits_{y=1}^{m-j\times d}[y\leqslant j\times d]\times \sum \limits_{i=1}^{\left \lfloor \dfrac{n-1}{d}\right \rfloor}(n-i\times d)) \\ -\sum \limits_{i=1}^{\left \lfloor \dfrac{n-1}{d}\right \rfloor}\sum \limits_{x=1}^{n-i\times d}[x\leqslant i\times d]\times \sum \limits_{j=1}^{\left \lfloor \dfrac{m-1}{d}\right \rfloor}\sum \limits_{y=1}^{m-j\times d}[y\leqslant j\times d])$

希望我上面那么长的$\LaTeX$没有打错吧,毕竟它……

时间复杂度:$\Theta(T\times n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

$60\%$算法:

#include<bits/stdc++.h>
using namespace std;
int n,m;
unsigned int ans;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
ans=0;
for(int i=1;i<n;i++)
for(int j=1;j<m;j++)
if(__gcd(i,j)==1)
ans+=(n-i)*(m-j)-(max((n-(i<<1)),0)*max(m-(j<<1),0));
printf("%d\n",(n+m+(ans<<1))&1073741823);
}
return 0;
}

$100\%$算法$1$:

#include<bits/stdc++.h>
using namespace std;
int n,m;
pair<unsigned int,unsigned int> s[4001][4001];
int main()
{
for(int i=1;i<=4000;i++)
for(int j=1;j<=4000;j++)
{
s[i][j].first=(s[i-1][j].first+s[i][j-1].first-s[i-1][j-1].first+(__gcd(i,j)==1))&1073741823;
s[i][j].second=(s[i-1][j].second+s[i][j-1].second-s[i-1][j-1].second+s[i][j].first-s[i>>1][j>>1].first)&1073741823;
}
int T;scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
printf("%d\n",(n+m+(s[n-1][m-1].second<<1))&1073741823);
}
return 0;
}

$100\%$算法$2$:

#include<bits/stdc++.h>
using namespace std;
int n,m;
int phi[4001],mu[4001];
bool vis[4001];
unsigned int ans;
void pre_work()
{
mu[1]=1;
for(int i=2;i<=4000;i++)
{
if(!vis[i]){phi[++phi[0]]=i;mu[i]=-1;}
for(int j=1;j<=phi[0];j++)
{
if(i*phi[j]>4000)break;
vis[i*phi[j]]=1;
if(!(i%phi[j])){mu[i*phi[j]]=0;break;}
mu[i*phi[j]]=-mu[i];
}
}
}
int main()
{
pre_work();
int T;scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
ans=0;
for(int i=1;i<n;i++)
ans+=2*mu[i]*(((n/(2*i)+1)*(n/(2*i))*i/2+n*((n-1)/i-n/(2*i))-((n-1)/i+n/(2*i)+1)*((n-1)/i-n/(2*i))*i/2)*(m*((m-1)/i)-((m-1)/i)*((m-1)/i+1)*i/2)+((m/(i*2)+1)*(m/(i*2))*i/2+m*((m-1)/i-m/(i*2))-((m-1)/i+m/(i*2)+1)*((m-1)/i-m/(i*2))*i/2)*(n*((n-1)/i)-((n-1)/i)*((n-1)/i+1)*i/2)-((n/(2*i)+1)*(n/(2*i))*i/2+n*((n-1)/i-n/(2*i))-((n-1)/i+n/(2*i)+1)*((n-1)/i-n/(2*i))*i/2)*((m/(i*2)+1)*(m/(i*2))*i/2+m*((m-1)/i-m/(i*2))-((m-1)/i+m/(i*2)+1)*((m-1)/i-m/(i*2))*i/2));
printf("%d\n",(n+m+ans)&1073741823);
}
return 0;
}

rp++

[CSP-S模拟测试]:夜鹰与玫瑰(数学)的更多相关文章

  1. [CSP-S模拟测试]:题(DP+数学)

    题目描述 出个题就好了.这就是出题人没有写题目背景的原因.你在平面直角坐标系上.你一开始位于$(0,0)$.每次可以在上/下/左/右四个方向中选一个走一步.即:从$(x,y)$走到$(x,y+1),( ...

  2. [CSP-S模拟测试]:C(倍增+数学)

    题目传送门(内部题152) 输入格式 第一行两个整数$N,Q$. 接下来一行$N$个整数,第$i$个为$a_i$. 接下来的$N-1$行,每行两个整数$u,v$.表示$u,v$之间有一条边. 接下来的 ...

  3. [CSP-S模拟测试]:B(DP+数学)

    题目传送门(内部题45) 输入格式 第一行$3$个整数$n,m,P$.第二行$m$个整数,表示$m$次询问. 输出格式 一行$m$个整数表示答案. 样例 样例输入1: 2 4 40 1 2 3 样例输 ...

  4. [CSP-S模拟测试]:物理课(数学)

    题目传送门(内部题144) 输入格式 从$physics.in$读入数据. 第一行一个数$T$,代表有$T$组数据.接下来$T$行每行$4$个浮点数,分别为$\theta,v,d,g$,保留到小数点后 ...

  5. [CSP-S模拟测试]:最大或(数学)

    题目传送门(内部题141) 输入格式 输入文件包含多组测试数据,第一行为一个正整数$T$,表示数据组数. 接下来$T$行,每行两个正整数$l,r$.数据保证$l\leqslant r$成立. 输出格式 ...

  6. [CSP-S模拟测试]:平方数(数学+哈希)

    题目传送门(内部题137) 输入格式 第一行,一个正整数$n$. 第二行$n$个正整数$a_1\sim a_n$. 输出格式 输出一个整数,为满足条件的二元组个数. 样例 样例输入: 51 2 3 4 ...

  7. [CSP-S模拟测试]:简单计算(数学)

    题目传送门(内部题104) 输入格式 第一行一个正整数$T$,表示该测试点内的数据组数,你需要对该测试点内的$T$组数据都分别给出正确的答案才能获得该测试点的分数. 接下来$T$组数据,每组数据一行两 ...

  8. [CSP-S模拟测试]:异或(数学)

    题目描述 给定$L,R$,我们希望你求出:$$\sum\limits_{i=L}^R\sum\limits_{j=L}^R(i\oplus j)$$其中这里的$\oplus$表示异或运算.答案对$10 ...

  9. [CSP-S模拟测试]:位运算(数学)

    题目传送门(内部题72) 输入格式 输入文件$bit.in$ 每个输入文件包含$T$组测试数据.输入文件的第一行为一个整数$T$,表示数据组数.接下来$T$行,每行表示一组测试数据每组测试数据包括三个 ...

随机推荐

  1. Distribution money

    Distribution money Accepts: 713 Submissions: 1881 Time Limit: 2000/1000 MS (Java/Others) Memory Limi ...

  2. vue-cli2.X环境搭建

    1.先安装nodejs环境https://npm.taobao.org/mirrors/node (选择版本) 下一步 下一步 默认安装就行 2.检查node和npm的是否成功安装node -v np ...

  3. mysql实现“存在即更新,不存在即插入”

    方法1:使用replace关键字 replace是insert的增强版,可以实现插入的数据和已存在的数据发生主键或者唯一键重复,则删除已存在的数据,再实现插入,如果不重复,则直接插入数据. 结合Myb ...

  4. windows10激活

    (1).首先,我们先查看一下Win10正式专业版系统的激活状态:按住win+r键,运行命令提示符,输入slmgr.vbs -xpr,点击确定,查看系统的状态是什么时候到期或者是处于通知状态. (2). ...

  5. 《图解设计模式》读书笔记6-1 VISITOR模式

    目录 1. Visitor模式简介 2. 示例 2.1 类图 2.2 代码 3. 模式的角色和类图 4. 思路拓展 4.1 双重分发 4.2 开闭原则 4.3 难以增加ConcreteElement角 ...

  6. CSS最基础的语法和三种引入方式

    **CSS语法** CSS 规则由两个主要的部分构成:选择器,以及一条或多条声明.选择器通常是您需要改变样式的 HTML 元素. selector {declaration1; declaration ...

  7. git提交时,仓库是空的,本地有源码。

    应该打开cmd   归到项目路径 然后输入git push -u origin master -f 是把本地的项目强制推送到空的仓库 git init (在当前文件夹下初始化一个git仓库) git ...

  8. 实验报告(五)&第七周学习总结

    实验目的 理解抽象类与接口的使用: 了解包的作用,掌握包的设计方法. 实验要求 掌握使用抽象类的方法. 掌握使用系统接口的技术和创建自定义接口的方法. 了解 Java 系统包的结构. 掌握创建自定义包 ...

  9. java中Comparator比较器顺序问题,源码分析

    提示: 分析过程是个人的一些理解,如有不对的地方,还请大家见谅,指出错误,共同学习. 源码分析过程中由于我写的注释比较啰嗦.比较多,导致文中源代码不清晰,还请一遍参照源代码,一遍参照本文进行阅读. 原 ...

  10. python面试如何以相反顺序展示一个文件的内容?

    >>> for line in reversed(list(open('Today.txt'))): print(line.rstrip())containeritertools D ...