codeforces 559D Randomizer
题意简述:
在一个格点图中 给定一个凸$n$边形(每个定点均在格点上),随机选择其中一些点构成一个子多边形,
求子多边形的内部点个数的期望。
----------------------------------------------------------------------------------------------------------------------------------
首先这题是需要知道 皮克定理 这个结论的
我们用 $s$代表多边形面积 $ans$代表内部点数(即要求的答案)$node$代表边上的格点
公式即为 $ans=s-\frac{node}{2}+1$
----------------------------------------------------------------------------------------------------------------------------------
然后这题是求期望的 对于期望 我们知道它是满足分配率的 于是我们可以考虑分别求出$s$和$node$的期望
对于$s$的期望 可以这样考虑(算贡献)
每次选出一个子多边形后 剩余部分显然是可以用多个顶点连续的多边形补成的
我们可以用前缀和维护这个顶点连续的多边形的面积 然后来算贡献
公式为$\displaystyle \frac{2^{n-i} -1}{2^n-1-n-C_2^n}*$子多边形面积
直接求出所有是$O(n^2)$的 然而观察公式我们可以发现i取较大的数的时候对答案的影响是很小的
综合考虑题目要求的$10^{-9}$的相对误差以及$double$的精度 $i$的上界$lim$可以取$min(n,60)$
$node$的求法也是类似的 只要熟悉如何算贡献就比较容易了 想了很久还不懂的话可以留言
----------------------------------------------------------------------------------------------------------------------------------
这样我们就可以过掉样例了 然后我们会$ WA 10$
因为$double$不仅仅是精度限制 还有范围限制 大概范围就是 $(10^{300}~10^{-300})$
这个问题 初次遇见还是很纠结的 多想想后 我们发现可以把公式变形成这样(上下同时除$2^n$):
$\displaystyle\frac{2^{-i} -1}{1-2^{-n}*(1+n+C_n^2)}*$子多边形面积
----------------------------------------------------------------------------------------------------------------------------------
差不多就是这些了 第一次写$div1D$题 还有些小激动呢
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1e5+;
double polygon[N],p[N];
int x[N],y[N];
double s,ans,node,product;
int n,lim;
double cross(long long x1,long long y1,long long x2,long long y2)
{
return x1*y2-x2*y1;
}
int main()
{
scanf("%d",&n);
lim=min(n,);
p[]=;
for(int i=;i<n;++i)
{
scanf("%d%d",&x[i],&y[i]);
p[i+]=p[i]*0.5;
}
for(int i=;i<lim;++i)
{
product=(p[i]-p[n])/
(-p[n]*((long long)n*(n-)/+n+));
for(int j=;j<n;++j)
{
polygon[j]+=cross(x[(j+i-)%n]-x[j],y[(j+i-)%n]-y[j],
x[(j+i-)%n]-x[j],y[(j+i-)%n]-y[j]);
s-=product*polygon[j];
}
}
for(int i=;i<n-;++i)
s+=cross(x[i+]-x[],y[i+]-y[],
x[i+]-x[],y[i+]-y[]);
s/=;
for(int i=;i<=lim;++i)
{
product=(p[i]-p[n])/
(-p[n]*((long long)n*(n-)/+n+));
for(int j=;j<n;++j)
node+=product*__gcd(abs(x[(j+i-)%n]-x[j]),
abs(y[(j+i-)%n]-y[j]));
}
ans=s-node/+;
printf("%.10f\n",ans);
return ;
}
codeforces 559D Randomizer的更多相关文章
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- CodeForces - 274B Zero Tree
http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...
- CodeForces - 261B Maxim and Restaurant
http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...
- CodeForces - 696B Puzzles
http://codeforces.com/problemset/problem/696/B 题目大意: 这是一颗有n个点的树,你从根开始游走,每当你第一次到达一个点时,把这个点的权记为(你已经到过不 ...
- CodeForces - 148D Bag of mice
http://codeforces.com/problemset/problem/148/D 题目大意: 原来袋子里有w只白鼠和b只黑鼠 龙和王妃轮流从袋子里抓老鼠.谁先抓到白色老鼠谁就赢. 王妃每次 ...
随机推荐
- Card Collector AtCoder - 5168(二分图匹配的HALL定理)
题意: 给定一个H行W列的矩阵,在矩阵的格点上放带权值的卡片(一个点上能放多张). 现在从每行每列各拿走一张卡片(没有可以不拿),求可以拿到的最大权值. 卡片数N<=1e5,H,W<=1e ...
- 网络流强化-HDU 3338-上下界限制最大流
题意是: 一种特殊的数独游戏,白色的方格给我们填1-9的数,有些带数字的黑色方格,右上角的数字代表从他开始往右一直到边界或者另外一个黑格子,中间经过的白格子的数字之和要等于这个数字:左下角的也是一样的 ...
- JSP基础--九大内置对象
JSP九大内置对象 Object findAttribute(String name):依次在page.request.session.application范围查找名称为name的数据,如果找到就停 ...
- tp5.1 phpspreadsheet- 工具类 导入导出(整合优化,非原创,抄一抄,加了一些自己的东西,)
phpspreadsheet-工具类 导入导出(整合优化,非原创,抄一抄,加了一些自己的东西)1. composer require phpoffice/phpspreadsheet2. 看最下面的两 ...
- 什么是SpringMvc
1.什么是SpringMvc? SpringMvc是spring的一个模块 基于MVC的一个框架 无需中间整合层来整合 什么是MVC ?mvc在b/s下的应用: 首先请求发送request请求到C(c ...
- vue内置组件——transition简单原理图文详解
基本概念 Vue 在插入.更新或者移除 DOM 时,提供多种不同方式的应用过渡效果 在 CSS 过渡和动画中自动应用 class 可以配合使用第三方 CSS 动画库,如 Animate.css 在过渡 ...
- XML及XML的解析
XML的用途 充当显示数据(以XML充当显示层) 存储数据的功能 以XML描述数据,并在联系服务器与系统的其余部分之间传递.(传输数据的一种格式),从某种角度来讲,XML是数据封装和消息传递技术 SA ...
- Python的list中的选取范围
a = [1,2,3,4,5,6,7,8,9,10] a[0:1] = [1] a[0:2] = [1,2] 包含开头,不包含结尾. a [:-1]: 从头一直到最后一个元素a[-1],但不包含最后一 ...
- DB事务隔离级别
原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11393417.html 事务隔离级别 Note: Oracle默认的隔离级别是 READ COMMIT ...
- Struts和Hibernate的jar包
这几天做了一个javaee关于struts框架和Hibernate框架的实践,实践内容倒是没什么,关键是找框架的配置花了许多时间 于是在这里把这两个框架的有关jar上传分享一下 链接: https:/ ...