题意:给出数n, 代表有多少头牛, 这些牛的编号为1~n, 再给出含有n-1个数的序列, 每个序列的数 ai 代表前面还有多少头比 ai 编号要小的牛, 叫你根据上述信息还原出原始的牛的编号序列

分析:如果倒着看这个序列的话, 那序列的最后一个元素就能够确定一个编号。举个例子:如果序列的最后一个元素为0, 那就说明这头牛前面再也没有比它编号更小的牛了, 所以这头牛的编号肯定是最大的, 我们只要给它所在的编号加个标记, 然后继续根据倒数第二个、第三个……来依次确定便可还原整个序列, 这里可以使用树状数组做, 初始化全部加1操作, 然后开始枚举编号, 看哪个编号前面是有多少比其编号小的牛, 即区间求和, 一旦和一开始给出的序列元素相同则确定是此编号, 确定一头之后便抹去这头牛的编号, 即add(num, -1), 时时更新即可, 但是这里如果用for循环去枚举和的话未免太慢, 但也能AC, 这里考虑使用二分查找便很快了!

瞎搞:这题实际上还可以用线段树做, 做法大同小异, 但没想到的是, 这还是一个DP可以解决的题目……

树状数组:

#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
#include<stack>
#define lowbit(i) (i&(-i))
#define LL long long
using namespace std;
];
];
int n;
inline void add(int i, int val)
{
    while(i<=n){
        c[i] += val;
        i += lowbit(i);
    }
}
int sum(int i)
{
    ;
    ){
        ans += c[i];
        i -= lowbit(i);
    }
    return ans;
}
int Bin_search(int L, int R, int key)
{
    int mid;
    while(L < R){
        mid = L + ((R-L)>>);
         < key) L = mid+;
        else R = mid;
    }
    return R;
}
int main(void)
{
    scanf("%d", &n);
    memset(c, , sizeof(c));
    stack<int> st;
    st.push();
    ; i<=n-; i++){
        int temp;
        scanf("%d", &temp);
        st.push(temp);
        add(i, );
    }
    add(n, );
    ;
    while(!st.empty()){
        int temp = st.top();
        st.pop();
        , n, temp);
        ans[top++] = num;
        add(num, -);
    }
    ; i>=; i--){
        printf("%d\n", ans[i]);
    }
    ;
}

线段树:

#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
typedef struct segment
{
    int L, R, len;
}T;///线段树类型
], result[];///a储存input,result储存output
T tree[];///线段树数组
///------------------------------------
void init(int, int, int);
int query(int, int);
///------------------------------------
int main(void)
{
    std::ios::sync_with_stdio(false);///关闭同步,加快读入速度
    int n;
    cin>>n;
    a[] = ;///第一个前面不可能有比它小的数
    ; i<=n; i++){
        cin>>a[i];
    }
    init(, , n);///(root, L, R)
    ; i--){
        result[i] = query(, a[i]+);
    }
    ; i<=n; i++) cout<<result[i]<<endl;
    ;
}
///--------------------------------------------
void init(int root, int L, int R)///给线段树初始化从1~n的数据
{
    tree[root].L = L;
    tree[root].R = R;
    tree[root].len = R-L+;
    if(L == R) return ;
    init(*root, L, (L+R)/);
    init(*root+, (L+R)/+, R);
}
///--------------------------------------------
int query(int node, int aim)
{
    tree[node].len--;
    if(tree[node].L == tree[node].R) return tree[node].L;
    *node].len) , aim);
    +, aim-tree[node*].len);
}

POJ 2182 Lost Cows (树状数组 && 二分查找)的更多相关文章

  1. poj2182Lost Cows——树状数组快速查找

    题目:http://poj.org/problem?id=2182 从后往前确定,自己位置之前没有被确定的且比自己编号小的个数+1即为自己的编号: 利用树状数组快速查找,可另外开一个b数组,角标为编号 ...

  2. POJ 2481:Cows 树状数组

    Cows Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 14906   Accepted: 4941 Description ...

  3. 【POJ2182】Lost Cows 树状数组+二分

    题中给出了第 i 头牛前面有多少比它矮,如果正着分析比较难找到规律.因此,采用倒着分析的方法(最后一头牛的rank可以直接得出),对于第 i 头牛来说,它的rank值为没有被占用的rank集合中的第A ...

  4. POJ 2892 Tunnel Warfare(树状数组+二分)

    题目链接 二分求上界和下界,树状数组.注意特殊情况. #include <cstring> #include <cstdio> #include <string> ...

  5. PAT-1057 Stack (树状数组 + 二分查找)

    1057. Stack Stack is one of the most fundamental data structures, which is based on the principle of ...

  6. toj 4353 Estimation(树状数组+二分查找)

    Estimation 时间限制(普通/Java):5000MS/15000MS     运行内存限制:65536KByte总提交: 6            测试通过: 1 描述 “There are ...

  7. 树状数组+二分||线段树 HDOJ 5493 Queue

    题目传送门 题意:已知每个人的独一无二的身高以及排在他前面或者后面比他高的人数,问身高字典序最小的排法 分析:首先对身高从矮到高排序,那么可以知道每个人有多少人的身高比他高,那么取较小值(k[i], ...

  8. POJ 2182 Lost Cows 【树状数组+二分】

    题目链接:http://poj.org/problem?id=2182 Lost Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  9. POJ 2828 Buy Tickets (线段树 or 树状数组+二分)

    题目链接:http://poj.org/problem?id=2828 题意就是给你n个人,然后每个人按顺序插队,问你最终的顺序是怎么样的. 反过来做就很容易了,从最后一个人开始推,最后一个人位置很容 ...

随机推荐

  1. Android基础内容提供者ContentProvider的使用详解(转)

    1.什么是ContentProvider 首先,ContentProvider(内容提供者)是android中的四大组件之一,但是在一般的开发中,可能使用的比较少. ContentProvider为不 ...

  2. Vim命令合集(四)

    Vim命令合集 命令历史 以:和/开头的命令都有历史纪录,可以首先键入:或/然后按上下箭头来选择某个历史命令. 启动vim 在命令行窗口中输入以下命令即可 vim 直接启动vim vim filena ...

  3. Nginx配置与使用

    一.简单介绍 由俄罗斯程序员IgorSysoev研发,2004年开源公布,特点是:内存cpu占用低,并发能力强,稳定,配置示例,反向代理:互联网企业 70%以上公司都在使用 nginx: 二.安装 1 ...

  4. Python程序结构(sys、os)

    一.Python组成结构 Python程序一般由包package.模块moudle.函数function组成.具体关系如下图:

  5. 虚机Linux最小系统下安装图形界面,与yum配置

    出于未知原因,想装一下. 因为有光盘,所以就从光盘安装就可以了. 首先是配置yum下的下载地址: 找到yum的地址,然后打开文件. 然后建立该文件的/media/cdrom路径.将光盘挂载到该路径下. ...

  6. 在Asp.net core使用配置Json创建动态目录树

    一.前言 使用动态目录树可以使左边栏中的目录更加灵活,本文介绍如何将目录保存在json配置文件中,再读取出来经过处理后生成目录树. 二.数据结构 1. TreeMenuNode类名 将TreeMenu ...

  7. sql server 三角函数

    正弦函数SIN(x)和反正弦函数ASIN(x) --SIN(x)返回x的正弦,其中x为弧度值 --ASIN(x)返回x的反正弦,即正弦x的值,若x不在-1到1的范围内,则返回NULL 示例:selec ...

  8. NTFS,FAT32和exFAT文件系统的区别

    NTFS,FAT32和exFAT文件系统的区别 本文所有资料来源于网络,仅做个人学习使用,如有侵权,请联系删除 1.什么是文件系统 文件系统是系统对文件的存放排列方式,不同格式的文件系统关系到数据是如 ...

  9. luogu P4654 [CEOI2017]Mousetrap

    传送门 这里把终点设为根方便后续处理,那么目标就是要让老鼠走到根 首先考虑老鼠动不了的情况,这种情况下可以把从这个点到终点路径上的分支堵住,然后再疏通路径上的走过的边,可以发现这是这种情况下最优的决策 ...

  10. wex5 如何写后台BAAS

    Data.java: 在class中链接数据源: 配置的numsql数据源 private static final String DATASOURCE_NUMYSQL = "numysql ...