题意:给出数n, 代表有多少头牛, 这些牛的编号为1~n, 再给出含有n-1个数的序列, 每个序列的数 ai 代表前面还有多少头比 ai 编号要小的牛, 叫你根据上述信息还原出原始的牛的编号序列

分析:如果倒着看这个序列的话, 那序列的最后一个元素就能够确定一个编号。举个例子:如果序列的最后一个元素为0, 那就说明这头牛前面再也没有比它编号更小的牛了, 所以这头牛的编号肯定是最大的, 我们只要给它所在的编号加个标记, 然后继续根据倒数第二个、第三个……来依次确定便可还原整个序列, 这里可以使用树状数组做, 初始化全部加1操作, 然后开始枚举编号, 看哪个编号前面是有多少比其编号小的牛, 即区间求和, 一旦和一开始给出的序列元素相同则确定是此编号, 确定一头之后便抹去这头牛的编号, 即add(num, -1), 时时更新即可, 但是这里如果用for循环去枚举和的话未免太慢, 但也能AC, 这里考虑使用二分查找便很快了!

瞎搞:这题实际上还可以用线段树做, 做法大同小异, 但没想到的是, 这还是一个DP可以解决的题目……

树状数组:

#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
#include<stack>
#define lowbit(i) (i&(-i))
#define LL long long
using namespace std;
];
];
int n;
inline void add(int i, int val)
{
    while(i<=n){
        c[i] += val;
        i += lowbit(i);
    }
}
int sum(int i)
{
    ;
    ){
        ans += c[i];
        i -= lowbit(i);
    }
    return ans;
}
int Bin_search(int L, int R, int key)
{
    int mid;
    while(L < R){
        mid = L + ((R-L)>>);
         < key) L = mid+;
        else R = mid;
    }
    return R;
}
int main(void)
{
    scanf("%d", &n);
    memset(c, , sizeof(c));
    stack<int> st;
    st.push();
    ; i<=n-; i++){
        int temp;
        scanf("%d", &temp);
        st.push(temp);
        add(i, );
    }
    add(n, );
    ;
    while(!st.empty()){
        int temp = st.top();
        st.pop();
        , n, temp);
        ans[top++] = num;
        add(num, -);
    }
    ; i>=; i--){
        printf("%d\n", ans[i]);
    }
    ;
}

线段树:

#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
typedef struct segment
{
    int L, R, len;
}T;///线段树类型
], result[];///a储存input,result储存output
T tree[];///线段树数组
///------------------------------------
void init(int, int, int);
int query(int, int);
///------------------------------------
int main(void)
{
    std::ios::sync_with_stdio(false);///关闭同步,加快读入速度
    int n;
    cin>>n;
    a[] = ;///第一个前面不可能有比它小的数
    ; i<=n; i++){
        cin>>a[i];
    }
    init(, , n);///(root, L, R)
    ; i--){
        result[i] = query(, a[i]+);
    }
    ; i<=n; i++) cout<<result[i]<<endl;
    ;
}
///--------------------------------------------
void init(int root, int L, int R)///给线段树初始化从1~n的数据
{
    tree[root].L = L;
    tree[root].R = R;
    tree[root].len = R-L+;
    if(L == R) return ;
    init(*root, L, (L+R)/);
    init(*root+, (L+R)/+, R);
}
///--------------------------------------------
int query(int node, int aim)
{
    tree[node].len--;
    if(tree[node].L == tree[node].R) return tree[node].L;
    *node].len) , aim);
    +, aim-tree[node*].len);
}

POJ 2182 Lost Cows (树状数组 && 二分查找)的更多相关文章

  1. poj2182Lost Cows——树状数组快速查找

    题目:http://poj.org/problem?id=2182 从后往前确定,自己位置之前没有被确定的且比自己编号小的个数+1即为自己的编号: 利用树状数组快速查找,可另外开一个b数组,角标为编号 ...

  2. POJ 2481:Cows 树状数组

    Cows Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 14906   Accepted: 4941 Description ...

  3. 【POJ2182】Lost Cows 树状数组+二分

    题中给出了第 i 头牛前面有多少比它矮,如果正着分析比较难找到规律.因此,采用倒着分析的方法(最后一头牛的rank可以直接得出),对于第 i 头牛来说,它的rank值为没有被占用的rank集合中的第A ...

  4. POJ 2892 Tunnel Warfare(树状数组+二分)

    题目链接 二分求上界和下界,树状数组.注意特殊情况. #include <cstring> #include <cstdio> #include <string> ...

  5. PAT-1057 Stack (树状数组 + 二分查找)

    1057. Stack Stack is one of the most fundamental data structures, which is based on the principle of ...

  6. toj 4353 Estimation(树状数组+二分查找)

    Estimation 时间限制(普通/Java):5000MS/15000MS     运行内存限制:65536KByte总提交: 6            测试通过: 1 描述 “There are ...

  7. 树状数组+二分||线段树 HDOJ 5493 Queue

    题目传送门 题意:已知每个人的独一无二的身高以及排在他前面或者后面比他高的人数,问身高字典序最小的排法 分析:首先对身高从矮到高排序,那么可以知道每个人有多少人的身高比他高,那么取较小值(k[i], ...

  8. POJ 2182 Lost Cows 【树状数组+二分】

    题目链接:http://poj.org/problem?id=2182 Lost Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  9. POJ 2828 Buy Tickets (线段树 or 树状数组+二分)

    题目链接:http://poj.org/problem?id=2828 题意就是给你n个人,然后每个人按顺序插队,问你最终的顺序是怎么样的. 反过来做就很容易了,从最后一个人开始推,最后一个人位置很容 ...

随机推荐

  1. 【神经网络与深度学习】【Matlab开发】caffe-windows使能Matlab2015b接口

    [神经网络与深度学习][Matlab开发]caffe-windows使能Matlab2015b接口 标签:[神经网络与深度学习] [Matlab开发] 主要是想全部来一次,所以使能了Matlab的接口 ...

  2. PostgreSQL INSERT ON CONFLICT不存在则插入,存在则更新

    近期有一个需求,向一张数据库表插入数据,如果是新数据则执行插入动作,如果插入的字段和已有字段重复,则更新该行对应的部分字段 1. 创建测试表 create table meta_data ( id s ...

  3. 解决react-native 运行报错:Entry, ":CFBundleIdentifier", Does Not Exist

    首次运行react-native命令很可能报这样的错误,网上也有一堆人写出了解决方案,但可能每个人出错的原因都不一样,建议把ios目录在xcode中运行下,可以看到报错原因. 我的报错原因是因为808 ...

  4. mknod创建设备(加载新的设备驱动时候,通常会用到此命令)

    mknod - make block or character special filesmknod [OPTION]... NAME TYPE [MAJOR MINOR] option 有用的就是- ...

  5. HDU 1789 Doing Homework again(排序,DP)

    Doing Homework again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  6. 剑指offer-数值的整数次方-调整数组顺序使奇数位于偶数前面-代码的完整性-python

    题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方.   保证base和exponent不同时为0   思路 求base的expon ...

  7. centos:mysql主从同步配置(2018)

    centos:mysql主从同步配置(2018) https://blog.csdn.net/liubo_2016/article/details/82379115 主服务器:10.1.1.144; ...

  8. vue-cli常用插件安装教程

    1.安装sass npm i sass-loader node-sass --save-dev 2.安装stylus cnpm install stylus --save-dev cnpm insta ...

  9. 3-关于ES的几个小疑问和解答

    1.ES如何实现分布式 2.ES如何实现高实时 3.ES如何实现高扩展 4.ES7.x版本为何废弃type 5.搜索原理--知乎es

  10. java冒泡排序小实例

    首先我们了解下什么是冒泡排序: 冒泡排序就是把小的元素往前调或者把大的元素往后调.比较是相邻的两个元素比较,交换也发生在这两个元素之间.所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的: ...