题目链接: https://atcoder.jp/contests/agc002/tasks/agc002_f

题解: 讲一下官方题解的做法: 就是求那个图(官方题解里的)的拓扑序个数,设\(dp[i][j]\)表示有\(i\)个0色和\(j\)个非0色的图的拓扑序个数(\(i<j\)),则转移一是加入一个0色球,二是加入一个非0色球(拓扑序以非0色球开始),这种情况下我们固定了开头所以还剩\(((K-1)j+i-1)\)个位置放入\((K-2)\)个球,\(dp[i][j]=dp[i-1][j]+dp[i][j-1]\times {{(K-1)j+i-1}\choose{K-2}}\).

另外有一种反着的做法(我代码写的就是这个),但是并不懂(曾经懂过但是现在脑子又乱了)

启示: 这种计数很多都是考虑第一个,千万不要惯性思维无脑考虑最后一个!!!

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#define llong long long
using namespace std; const int N = 2000;
const int P = 1e9+7;
llong dp[N+3][N+3];
llong fact[5000003],finv[5000003];
int n,m; llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
} llong comb(llong x,llong y) {return x<0 || y<0 || x<y ? 0ll : fact[x]*finv[y]%P*finv[x-y]%P;} int main()
{
fact[0] = 1ll; for(int i=1; i<=5000000; i++) fact[i] = fact[i-1]*i%P;
finv[5000000] = quickpow(fact[5000000],P-2); for(int i=5000000-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d%d",&n,&m);
if(m==1) {printf("1"); return 0;}
dp[0][0] = 1ll;
for(int i=1; i<=n; i++)
{
dp[i][0] = 1ll;
for(int j=1; j<=i; j++)
{
dp[i][j] = dp[i-1][j];
dp[i][j] += comb((n-i)+(n-(j-1))*(m-1)-1,m-2)*dp[i][j-1]%P;
dp[i][j] %= P;
}
}
llong ans = dp[n][n]*fact[n]%P;
printf("%lld\n",ans);
return 0;
}

AtCoder AGC002F Leftmost Ball (DP、组合计数)的更多相关文章

  1. ATcoder 2000 Leftmost Ball

    Problem Statement Snuke loves colorful balls. He has a total of N×K balls, K in each of his favorite ...

  2. 3.29省选模拟赛 除法与取模 dp+组合计数

    LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...

  3. 【AGC002F】Leftmost Ball DP 数学

    题目大意 有\(n\)种颜色的球,每种\(m\)个.现在zjt把这\(nm\)个球排成一排,然后把每种颜色的最左边的球染成第\(n+1\)种颜色.求最终的颜色序列有多少种,对\(1000000007\ ...

  4. ZOJ-3380 Patchouli’s Spell Cards DP, 组合计数

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3380 题意:有m种不同的元素,每种元素都有n种不同的相位,现在假 ...

  5. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  6. bzoj 2425 [HAOI2010]计数 dp+组合计数

    [HAOI2010]计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 289[Submit][Status][Discus ...

  7. 牛客国庆集训派对Day3 B Tree(树形dp + 组合计数)

    传送门:https://www.nowcoder.com/acm/contest/203/B 思路及参考:https://blog.csdn.net/u013534123/article/detail ...

  8. AGC002 F Leftmost Ball——DP

    题目:https://atcoder.jp/contests/agc002/tasks/agc002_f 充要条件是前缀0的个数 >= 颜色种数. 设计 DP ,放一个颜色的时候就把所有该颜色的 ...

  9. BZOJ 1801: [Ahoi2009]chess 中国象棋 [DP 组合计数]

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放 ...

随机推荐

  1. [转帖]「白帽黑客成长记」Windows提权基本原理(上)

    「白帽黑客成长记」Windows提权基本原理(上) https://www.cnblogs.com/ichunqiu/p/10949592.html 我们通常认为配置得当的Windows是安全的,事实 ...

  2. 【洛谷p1051】谁拿了最多奖学金

    谁拿了最多奖学金[题目链接] 这道题早就想做它啦. 咱也不知道为啥,咱就是看这道题特别顺眼呢qwq: MY SOLUTION: 其实这道题很简单,开一个结构体记录各项信息,然后根据条件计算出这个人获得 ...

  3. Thread 线程 1

    Thread 常用方法: String getName() 返回该线程的名称. void setName(String name) 改变线程名称,使之与参数 name 相同. int getPrior ...

  4. Java基础——Modifier类

    转自:https://www.cnblogs.com/baiqiantao/p/7478523.html   反射 Reflect Modifier 修饰符工具类 在查看反射相关的Class.Fiel ...

  5. java 字符串锁

    package com.example.demo.controller; public class StringLock { public void method(String p) { // new ...

  6. 关于IDEA中@Autowired 注解报错~图文

    例如鼠标放上去会报错如下: Could not autowire. No beans of 'StudentMapper' type found. less... (Ctrl+F1) Inspecti ...

  7. Redis【4】Java Jedis 操作 Redis~

    package redis.redis; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; /** * 描 ...

  8. String,StringBuilder和StringBuffer

    String 字符串常量,由String创建的字符内容,长度是不可改变,存放字符的数组被声明为final. 实际上String类操作字符串是通过建立一个StringBuffer,然后调用append( ...

  9. 为什么对华为不拍Arm?

    华为可以靠着现有的 ARMv8 授权坚持很长一段时间,足以等到这波科技禁运结束. 今天,华为在美国遭遇的科技禁运上升到了全球新高度. 据 BBC 报道,由软银全资拥有的英国技术公司 Arm 向员工发出 ...

  10. python-函数1(定义-作用-优势-返回值)

    python-函数1(定义-作用-优势-返回值) 1.面向对象的定义是靠-类>>class2.面向过程的定义是靠-过程 >>def3.函数式编程的定义是靠-函数>> ...