浅谈BSGS(大步小步)及其扩展
用途:
一般用来求\(a^x\equiv b\,\,(mod\,p)\)的最小正整数解,其中gcd(a,p)=1
设\(u=\lceil sqrt(p)\rceil\),则式子可以转化为\(a^{iu-j}\equiv b\,\,(mod\,p)\),其中\(i\in[1,u],j\in[0,u)\)
于是\(a^{iu}\equiv a^jb\,\,(mod\,p)\),我们就可以枚举j,存到map中,再枚举i判重就行了
不过当存在不同的j使\(a^jb\,mod\,p\)相同时,我们记录较大的(因为j越大答案越小嘛)
简易原理:
费马小定理:若gcd(x,p)=1,则有\(\\x^{p-1}\equiv1\,\,(mod\,p)\),得到\(x^p\equiv x\,\,(mod\,p)\)
所以当指数不小于p时,mod p的值会形成循环
Code:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
map<int,int> mp;
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
int quickpow(int a,int b,int p){
int re=1;
while(b){if(b&1) re=1ll*re*a%p;a=1ll*a*a%p;b>>=1;}
return re;
}
void solve(){
int p=read(),a=read(),b=read();
if(a%p==0){puts("Couldn't Produce!");return ;}
if(b==1){puts("0");return ;}
int u=sqrt(p)+1,v=b;mp.clear();
for(int i=0;i<u;i++)
mp[v]=i,v=1ll*v*a%p;
int w=quickpow(a,u,p);v=1;
for(int i=1;i<=u;i++){v=1ll*v*w%p;
if(mp.count(v)){
printf("%d\n",i*u-mp[v]);
return ;
}
}puts("Couldn't Produce!");
}
int main(){
int T=read();
while(T--) solve();
return 0;
}
扩展:
可以看到BSGS是有着局限性的,即必须满足gcd(a,p)=1
那么当gcd(a,p)!=1时呢?我们设\(d=gcd(a,p)\)
Step1:
我们首先判断\(b\)是否满足\(d|b\),若不满足,由裴蜀定理可知无解
Step2:
式子转化为:
\]
令\(c=\frac{a^k}{\Pi_{i=1}^kd_i},b'=\frac{b}{\Pi_{i=1}^kd_i},p‘=\frac{p}{\Pi_{i=1}^kd_i}\),若\(c=b'\),则直接输出\(k\)
Step3:
令\(d=gcd(a,p')\),若\(d\ne 1\),则返回step1,不过b变成了b'
全部完成后,我们得到式子:\(a^{x-k}c\equiv b'\,\,(mod\,\,p')\),此时满足\(gcd(a,p')=1\)
那么我们便可以直接BSGS了
Code:
#include<bits/stdc++.h>
#include<unordered_map>
#define ll long long
using namespace std;
unordered_map<int,int> mp;
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
inline int gcd(int x,int y){
if(y>x) swap(x,y);
while(y){swap(x,y);y=y%x;}
return x;
}
inline int quickpow(int a,int b,int p){
int re=1;
while(b){if(b&1) re=1ll*re*a%p;a=1ll*a*a%p;b>>=1;}
return re;
}
inline void solve(int a,int p,int b){
if(p==1){puts("0");return ;}
if(b==1){puts("0");return ;}
int d=gcd(a,p),flag=0,k=0,c=1;
while(d^1){
if(b%d){
puts("No Solution");
flag=1;break;
}p/=d,b/=d,++k;
c=1ll*c*(a/d)%p;
if(b==c){
printf("%d\n",k);
flag=1;break;
}d=gcd(a,p);
}if(flag) return ;
mp.clear();
int u=sqrt(p)+1,v=b;
for(int i=0;i<u;i++)
mp[v]=i,v=1ll*v*a%p;
v=c,c=quickpow(a,u,p);
for(int i=1;i<=u;i++){
v=1ll*v*c%p;
if(mp.count(v)){
printf("%d\n",i*u-mp[v]+k);
return ;
}
}puts("No Solution");
}
int main(){
while(1){
int a=read(),p=read(),b=read();
if(a==0&&b==0&&p==0) return 0;
a%=p;b%=p;solve(a,p,b);
}
}
话说为什么unordered_map比map快这么多啊,不过有时候编译会出锅...
浅谈BSGS(大步小步)及其扩展的更多相关文章
- 浅谈BSGS
用于求解形如\(a^x≡b\mod p\)的最小非负整数解\(x\). 由欧拉定理\(a^{\phi(p)}≡1\mod p\)可以知道,我们找的解如果有解则一定在\(\phi(p)\)范围内,而最大 ...
- 浅谈BSGS和EXBSGS
我的 BSGS 和各位犇犇的差不多,但是不需要求逆元 Luogu [ TJOI2007 ] 可爱的质数 原题展现 题目描述 给定一个质数 \(p\),以及一个整数 \(b\),一个整数 \(n\),现 ...
- [BSGS]大步小步算法
问题 BSGS被用于求解离散对数,即同余方程: \[ A^x\equiv B\pmod{P} \] 求\(x\)的最小非负整数解. 保证\(A\perp P\)(互质). 分析 首先,我们根据费马小定 ...
- 浅谈集合框架六——集合扩展:Arrays工具类、集合与数组相互转换方式;
最近刚学完集合框架,想把自己的一些学习笔记与想法整理一下,所以本篇博客或许会有一些内容写的不严谨或者不正确,还请大神指出.初学者对于本篇博客只建议作为参考,欢迎留言共同学习. 之前有介绍集合框架的体系 ...
- 浅谈集合框架四——集合扩展:集合循环输出方式及list输出方式的效率对比
最近刚学完集合框架,想把自己的一些学习笔记与想法整理一下,所以本篇博客或许会有一些内容写的不严谨或者不正确,还请大神指出.初学者对于本篇博客只建议作为参考,欢迎留言共同学习. 之前有介绍集合框架的体系 ...
- 离散对数&&大步小步算法及扩展
bsgs algorithm ax≡b(mod n) 大步小步算法,这个算法有一定的局限性,只有当gcd(a,m)=1时才可以用 原理 此处讨论n为素数的时候. ax≡b(mod n)(n为素数) 由 ...
- 【ASP.NET MVC系列】浅谈ASP.NET MVC八大类扩展(上篇)
lASP.NET MVC系列文章 [01]浅谈Google Chrome浏览器(理论篇) [02]浅谈Google Chrome浏览器(操作篇)(上) [03]浅谈Google Chrome浏览器(操 ...
- BSGS&EXBSGS 大手拉小手,大步小步走
大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...
- [模板]大步小步算法——BSGS算法
大步小步算法用于解决:已知A, B, C,求X使得 A^x = B (mod C) 成立. 我们令x = im - j | m = ceil(sqrt(C)), i = [1, m], j = [0, ...
随机推荐
- JavaScript Array Reduce用于数组求和
需求一 假设有一个数组,需要对其中的元素进行求和. const numbers = [1, -1, 2, 3]; 传统写法,使用for循环求和 const numbers = [1, -1, 2, 3 ...
- 服务安全之:JWT
JWT是JSON Web Tokens的缩写.既然叫JSON Web Tokens,所以JWT Tokens中真正包含的是多个JSON对象.为什么是多个JSON对象呢?因为SWT Token实际 ...
- Jquery复习(二)之stop()易忘点
jQuery stop() 方法 jQuery stop() 方法用于停止动画或效果,在它们完成之前. stop() 方法适用于所有 jQuery 效果函数,包括滑动.淡入淡出和自定义动画. 语法:$ ...
- Linux Firewalld 简明介绍
防火墙作为保护服务器不受外部网络流量影响的一种方式.可以让用户定义一系列规则来控制外部网络中流入的流量,从而达到允许或阻塞的效果.firewalld 是防火墙服务的一个守护程序,实现了动态修改拥有 D ...
- Coursera机器学习笔记(一) - 监督学习vs无监督学习
转载 http://daniellaah.github.io/2016/Machine-Learning-Andrew-Ng-My-Notes-Week-1-Introduction.html 一. ...
- CentOs7 防火墙的开放与关闭及端口的设定
1.查看firewall服务状态 systemctl status firewalld 2.查看firewall的状态 firewall-cmd --state 3.开启.重启.关闭.firewall ...
- case函数,replace函数
(case '字段' when '数据1' then '输出1' when '数据2' then '输出2' when '数据3' then '输出3' else '其他数据输出一致' end) as ...
- 搭建CocoaPods远程私有库
1.创建自己的远程私有索引库,用来存放私有框架的.podspec文件,并将其添加到本地索引 我用的仓库是码云(https://gitee.com),用自己的账号新建一个私有仓库,我命名为Private ...
- Python3使运行暂停的方法
在Python3中已经有很大一部分语句与Python2不互通了,运行暂停的方法也有所不同. 1.input(); 这种方法不用包含模块,因此这也是最常用的一种暂停手段. Python2中的raw_in ...
- 交叉工具链和makefile
交叉工具链: arm-linux-gcc:交叉编译器 arm-linux-ld:交叉连接器 arm-linux-readelf:交叉ELF文件工具 arm-linux-objdump:交叉反汇编器 a ...