链接:

https://www.acwing.com/problem/content/93/

题意:

给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

思路:

用二进制枚举哪些点被经过了.同时枚举经过的点j,再枚举经过点j之前的点k.

得到Dp[i][j] = min(Dp[i][j], Dp[lasti][k]+Len[k][j]).其中i对应经过点j时的压缩值,lasti为经过点j上一时刻的压缩值.

代码:

#include <bits/stdc++.h>
using namespace std; int F[1<<20][30];
int Map[30][30];
int n; int main()
{
scanf("%d", &n);
for (int i = 0;i < n;i++)
{
for (int j = 0;j < n;j++)
scanf("%d", &Map[i][j]);
}
memset(F, 0x3f3f, sizeof(F));
F[1][0] = 0;
for (int i = 1;i < (1<<n);i++)
{
for (int j = 0;j < n;j++)
{
if ((i >> j) & 1)
{
for (int k = 0;k < n;k++)
{
if ((i ^ (1<<j)) >> k & 1)
F[i][j] = min(F[i][j], F[i^(1<<j)][k]+Map[k][j]);
}
}
}
}
printf("%d\n", F[(1<<n)-1][n-1]); return 0;
}

Acwing-91-最短Hamilton路径(状压DP)的更多相关文章

  1. 完全图的最短Hamilton路径——状压dp

    题意:给出一张含有n(n<20)个点的完全图,求从0号节点到第n-1号节点的最短Hamilton路径.Hamilton路径是指不重不漏地经过每一个点的路径. 算法进阶上的一道状压例题,复杂度为O ...

  2. 最短Hamilton路径-状压dp解法

    最短Hamilton路径 时间限制: 2 Sec  内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamil ...

  3. AcWing 91. 最短Hamilton路径

    今天第一次在\(AcWing\)这个网站上做题,来发一下此网站的第一篇题解 传送门 思路 直接枚举的话时间复杂度为\(O(n*n!)\) 复杂度显然爆炸,所以我们用二进制枚举,这样就可以把复杂度降到\ ...

  4. 『最短Hamilton路径 状态压缩DP』

    状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...

  5. 状压dp 持续更新

    前置知识点:二进制状态压缩,动态规划. 1. AcWing 91 最短Hamilton路径 (https://www.acwing.com/problem/content/93/) 给定一张 n 个点 ...

  6. CH0103最短Hamilton路径 & poj2288 Islands and Brigdes【状压DP】

    虐狗宝典学习笔记: 取出整数\(n\)在二进制表示下的第\(k\)位                                                    \((n >> ...

  7. 最短Hamilton路径(状压dp)

    最短Hamilton路径实际上就是状压dp,而且这是一道作为一个初学状压dp的我应该必做的题目 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 ...

  8. AcWing 最短Hamilton距离 (状压DP)

    题目描述 给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径. Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰 ...

  9. 最短Hamilton路径【状压DP】

    给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 ...

随机推荐

  1. Spring体系

    1.Spring简介 Spring是一个轻量级Java开发框架,最早有Rod Johnson创建,目的是为了解决企业级应用开发的业务逻辑层和其他各层的耦合问题.它是一个分层的JavaSE/JavaEE ...

  2. IE11兼容IE8的设置

    我们在使用ie11浏览器的时候,有些网站的兼容性不是太好,这个时候就要设置下ie11的兼容性了.那么ie11浏览器怎么设置兼容IE8呢?下面就让小编给大家介绍一下吧. 首先我们打开电脑里面的ie11浏 ...

  3. 【Python开发】python使用urllib2抓取防爬取链接

    前几天刚看完<Linux/Unix设计思想>,真是一本不错的书,推荐想提高自己代码质量的童鞋看一下,里面经常提到要以小为美,一个程序做好一件事,短小精悍,因此我也按照这种思想来写pytho ...

  4. C++学习笔记-运算符重载

    运算符重载使得用户自定义的数据以一种更简洁的方式工作 运算符重载规则 重载运算符的限制 可以重载的运算符 + - * / % ^ & | ~ ! = < > += -= *= /= ...

  5. Xshell的使用以及常用命令

    工具/原料 Xshell 方法/步骤 打开软件,点击新建,在主机哪里写入要访问的ip地址,名称随意 点击文件之后,再点击打开: 就可以看到刚才新建的会话了: 点击连接,就会显示下面的画面,输入用户名, ...

  6. Spring @Import注解 —— 导入资源

    在应用中,有时没有把某个类注入到IOC容器中,但在运用的时候需要获取该类对应的bean,此时就需要用到@Import注解.示例如下: 先创建两个类,不用注解注入到IOC容器中,在应用的时候在导入到当前 ...

  7. 动态树(LCT、Top Tree、ETT)

    LCT Upd: 一个细节:假如我们要修改某个节点的数据,那么要先把它makeroot再修改,改完之后pushup. LCT是一种维护森林的数据结构,本质是用Splay维护实链剖分. 实链剖分大概是这 ...

  8. 最大两队竞争值(暴力dfs)--牛客多校第二场

    题意: 给你2n个人,两两有对立竞争值,问你分成两队最大的竞争值是多少. 思路: 直接暴力dfs,稍微有点卡,3800ms. #include<iostream> #include< ...

  9. 牛客 545A 小A与最大子段和 & CF 660F Bear and Bowling 4

    大意: 给定序列$a$, 求选择一个子区间$[l,r]$, 使得$\sum\limits_{i=l}^r(i-l+1)a_i$最大. $n\le2e5, |a_i|\le 1e7$. 记$s[i]=\ ...

  10. JsonObject、JsonArray操作json的个人总结

    介绍 JsonObject.JsonArray之前,先介绍下JsonConfig JsonConfig: setClassMap(Map classMap)设置json属性类型,上json里的其中值为 ...