参考:tensorflow书

1、模型的导出:

import tensorflow as tf
v1=tf.Variable(tf.constant(2.0),name="v1")
v2=tf.Variable(tf.constant(3.0),name="v2")
init_op=tf.global_variables_initializer()
saver=tf.train.Saver()
with tf.Session() as sess:
sess.run(init_op)
saver_path=saver.save(sess,"model.ckpt")
print("model saved in file:",saver_path)

2、模型的导入:

import tensorflow as tf
saver = tf.train.import_meta_graph("model.ckpt.meta")
with tf.Session() as sess:
saver.restore(sess, "model.ckpt")
print (sess.run(tf.get_default_graph().get_tensor_by_name("add:0")))

例1:模型的导入、导出的应用

import tensorflow as tf
var_1=tf.Variable(tf.constant([1,2],shape=[1,2]),name='var_1',dtype=tf.int32)
var_2=tf.placeholder(shape=[2,1],name='var_2',dtype=tf.int32)
var_3=tf.matmul(var_1,var_2,name='var_3')
with tf.Session() as sess:
saver=tf.train.Saver()
init=tf.global_variables_initializer()
sess.run(init)
saver.save(sess,'data.chkp')
saver=tf.train.import_meta_graph('data.chkp.meta')
predict=tf.get_default_graph().get_tensor_by_name('var_3:0')
sess.run(init)
print(predict.eval(session=sess,feed_dict={var_2:[[2],[2]]}))
with tf.Session() as sess:
saver.restore(sess,'data.chkp')
print(sess.run(var_3,feed_dict={var_2:[[5],[5]]}))

接上(若对变量名字作了改变,则在tf.train.Saver()中引入字典来作调整):

import tensorflow as tf
var_1=tf.Variable(tf.constant([1,2],shape=[1,2]),name='other_var_1')
var_2=tf.Variable(tf.constant([1,2],shape=[2,1]),name='other_var_2') #将上面代码的placeholder换成Variable
var_3=tf.matmul(var_1,var_2,name='var_3')
saver=tf.train.Saver({'var_1':var_1,'var_2':var_2})
with tf.Session() as sess:
saver.restore(sess,'data.chkp')
print(sess.run(var_3))

3、迭代的计数表示:

参考:http://blog.csdn.net/shenxiaolu1984/article/details/52815641

global_step = tf.Variable(0, trainable=False)
increment_op = tf.assign_add(global_step, tf.constant(1))
lr = tf.train.exponential_decay(0.1, global_step, decay_steps=1, decay_rate=0.9, staircase=False) #创建计数器衰减的tensor
tf.summary.scalar('learning_rate', lr) #对标量数据汇总和记录,把tensor添加到观测中
sum_ops = tf.summary.merge_all() #获取所有的操作
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
summary_writer = tf.train.SummaryWriter('/tmp/log/', sess.graph) #将监测结果输出目录
for step in range(0, 10): #迭代写入文件
   s_val = sess.run(sum_ops) # 获取serialized监测结果:bytes类型的字符串
   summary_writer.add_summary(s_val, global_step=step) # 写入文件
   sess.run(increment_op)

4、指数衰减法tf.train.exponential_decay()的使用

参考:http://blog.csdn.net/zsean/article/details/75196092

decayed_learning_rate=learining_rate*decay_rate^(global_step/decay_steps)     #每轮迭代通过乘以decay_rate来调整学习率值
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(0.1, global_step, 100, 0.96, staircase=True) #生成学习率,其中衰减率为0.96,每100轮巡检进行一次迭代,学习率乘以0.96
learning_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(....., global_step=global_step) #使用指数衰减学习率来进行梯度下降优化

注:Adam算法和传统的随机梯度下降不同。随机梯度下降保持单一的学习率(即alpha)更新所有的权重,学习率在训练过程中并不会改变。而Adam通过计算梯度的一阶矩估计和二阶矩估计而为不同的参数设计独立的自适应性学习率。

5、通过自己创建collection组织对象,来构建loss

import tensorflow as tf
x1=tf.constant(1.0)
l1=tf.nn.l2_loss(x1)
x2 = tf.constant([2.5, -0.3])
l2 = tf.nn.l2_loss(x2)
tf.add_to_collection('losses',l1) #通过手动指定一个collection来将创建的损失添加到集合
tf.add_to_collection("losses", l2)
losses=tf.get_collection('losses') #创建完成后统一获取所有损失,losses是一个tensor类型的list
loss_total=tf.add_n(losses) #把所有损失累加起来得到一个tensor
sess=tf.Session()
init=tf.global_variables_initializer()
sess.run(init)
sess.run(losses)
sess.run(loss_total)

6、tf.nn.embedding_lookup(embedding, self.input_x)的含义

该函数返回embedding中的第input_x行所对应的内容,并得到这些行所组成的tensor,如下图:

tensorflow函数介绍(2)的更多相关文章

  1. tensorflow函数介绍(4)

    1.队列的实现: import tensorflow as tf q=tf.FIFOQueue(2,'int32') #创建一个先进先出队列,指定队列中最多可以保存两个元素,并指定类型为整数. #先进 ...

  2. tensorflow函数介绍(3)

    tf.nn.softmax_cross_entropy_with_logits(logits,labels) #其中logits为神经网络最后一层输出,labels为实际的标签,该函数返回经过soft ...

  3. tensorflow函数介绍(1)

    tensorflow中的tensor表示一种数据结构,而flow则表现为一种计算模型,两者合起来就是通过计算图的形式来进行计算表述,其每个计算都是计算图上的一个节点,节点间的边表示了计算之间的依赖关系 ...

  4. tensorflow函数介绍 (5)

    1.tf.ConfigProto tf.ConfigProto一般用在创建session的时候,用来对session进行参数配置: with tf.Session(config=tf.ConfigPr ...

  5. Tensorflow | 基本函数介绍 简单详细的教程。 有用, 很棒

     http://blog.csdn.net/xxzhangx/article/details/54606040 Tensorflow | 基本函数介绍 2017-01-18 23:04 1404人阅读 ...

  6. python strip()函数 介绍

    python strip()函数 介绍,需要的朋友可以参考一下   函数原型 声明:s为字符串,rm为要删除的字符序列 s.strip(rm)        删除s字符串中开头.结尾处,位于 rm删除 ...

  7. PHP ob_start() 函数介绍

    ob_start() 函数介绍: http://www.nowamagic.net/php/php_ObStart.php ob_start()作用: http://zhidao.baidu.com/ ...

  8. Python开发【第三章】:Python函数介绍

    一. 函数介绍 1.函数是什么? 在学习函数之前,一直遵循面向过程编程,即根据业务逻辑从上到下实现功能,其往往用一长段代码来实现指定功能,开发过程中最常见的操作就是粘贴复制,也就是将之前实现的代码块复 ...

  9. row_number() OVER(PARTITION BY)函数介绍

      OVER(PARTITION BY)函数介绍 开窗函数               Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是:对于每个 ...

随机推荐

  1. vue动态路由传值以及get传值及编程式导航

    1.动态路由传值 1.配置路由处 { path: '/content/:id', component: Content }, // 动态路由 2.对应页面传值 <router-link :to= ...

  2. 如何修改运行中的docker容器的端口映射

    在docker run创建并运行容器的时候,可以通过-p指定端口映射规则.但是,我们经常会遇到刚开始忘记设置端口映射或者设置错了需要修改.当docker start运行容器后并没有提供一个-p选项或设 ...

  3. delphi idhttpsever

    http://blog.csdn.net/chelen_jak/article/details/50203809 delphi idhttpsever 2015-12-07 11:36 216人阅读  ...

  4. (转载)如何在 Github 上发现优秀的开源项目?

    转载自:传送门 之前发过一系列有关 GitHub 的文章,有同学问了,GitHub 我大概了解了,Git 也差不多会使用了,但是还是搞不清 GitHub 如何帮助我的工作,怎么提升我的工作效率? 问到 ...

  5. Codeforces Round #535 E2-Array and Segments (Hard version)

    Codeforces Round #535 E2-Array and Segments (Hard version) 题意: 给你一个数列和一些区间,让你选择一些区间(选择的区间中的数都减一), 求最 ...

  6. 分布式ID增强篇--优化时钟回拨问题

    原生实现 本文承接sharding-jdbc源码之分布式ID,在这篇文章中详细介绍了sharding-jdbc的分布式ID是如何实现的:很遗憾的是sharding-jdbc只是基于snowflake算 ...

  7. 重命名sql数据库

    use master select spid from master.dbo.sysprocesses where dbid=db_id('TW') 查看连接,杀死线程 use master kill ...

  8. mySql | Error: ER_DATA_TOO_LONG: Data too long for column 'base_info' at row 1

    问题描述:执行insert语句报以下错误 原因:数据库表,该字段在设计的时候长度过小,新插入的数据过长,会提示以上错误! 解决办法:修改表中该字段的长度限定.

  9. C#实现百度ping功能

    网站优化必做的事情之一,百度ping,主动推送给百度 文章添加时调用百度推送方法 //保存 protected void btnSubmit_Click(object sender, EventArg ...

  10. mpvue 无法获取$store的问题

    在开发的时候,我们喜欢将一些公共的方法,属性,放在一个特定的位置,例如在mpvue开发小程序的时候, 我们将其放在 vue提供的store里面,或者在mainjs中通过Vue.prototype.xx ...