P4707 重返现世 扩展 MinMax 容斥+DP
题目传送门
https://www.luogu.org/problem/P4707
题解
很容易想到这是一个 MinMax 容斥的题目。
设每一个物品被收集的时间为 \(t_i\),那么集齐 \(k\) 个物品所需时间就是 \(\{t_i\}\) 中的第 \(n-k+1\) 大的时间。
所以我们不妨把 \(k\) 看成原来的 \(n-k+1\),这个 \(k \leq 11\)。
然后根据扩展 MinMax 容斥
\]
以及期望的线性性质有
\]
所以我们需要做到的就是求出右边的东西。
因为 \(E(\min(T)) = \frac{m}{\sum\limits_{i\in T} p_i}\),又因为 \(\sum\limits_{i\in T} p_i \leq m \leq 10000\),而且有用的只有 \(\sum_{i\in T}p_i\),所以我们很容易得到一个 \(O(n^2m)\) 的做法。
令 \(dp[i][j][k]\) 表示在前 \(i\) 个数中选出来一个大小为 \(k\) 的集合,这个集合的 \(p_i\) 之和为 \(j\) 的总方案。
转移的时候可以类似于 01 背包来转移。
\]
最后答案就是
\]
然而不管这个做法多么好想,它毕竟是 \(O(n^2m)\) 的,只可以通过 \(70\%\) 的测试数据。
我们发现题目中有一个非常重要的条件我们没有用上:\(k \leq 11\)。
可是容斥的时候,\(|T| \geq k\),这个 \(k\) 的范围完全没有用武之地啊。
回顾前面的 dp 的过程。如果选了一个 \(\sum\limits_{i\in T} p_i = j\) 的集合 \(T\),并且 \(i \in T\),那么它是从一个 \(p\) 之和为 \(j - p_i\) 大小为 \(|T|-1\) 的集合转移而来的。
因为一个 \(\sum\limits_{i\in T} p_i = j\) 的集合 \(T\) 的贡献为 \(\sum\limits_{\sum\limits_{i\in T} p_i = j} (-1)^{|T| - k} \binom{|T|-1}{k-1}\)。
我们试着把组合数阶乘拆开,但是似乎发现不了什么有用的东西。但是别忘了,组合数还有另一种拆法:
\]
不妨令 \(dp[i][j][k]\) 表示前 \(i\) 个数,组成的背包总 \(p\) 值为 \(j\),在基准 \(k\) 为 \(k\) 的时候的总贡献。
于是上面的式子可以写成
\]
同时还需要加上不选的方案
\]
只需要求这个 \(dp\) 数组就可以了。
时间复杂度 \(O(nkm)\)。空间可能会开不下,可以使用滚动数组。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 1000 + 7;
const int M = 10000 + 7;
const int K = 11 + 7;
const int P = 998244353;
int n, m, k;
int p[N], dp[M][K];
inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
}
inline void work() {
k = n - k + 1;
dp[0][0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = m; j >= p[i]; --j)
for (int k = ::k; k; --k) sadd(dp[j][k], smod(dp[j - p[i]][k - 1] + P - dp[j - p[i]][k]));
}
int ans = 0;
for (int i = 1; i <= m; ++i) sadd(ans, (ll)dp[i][k] * m % P * fpow(i, P - 2) % P);
printf("%d\n", ans);
}
inline void init() {
read(n), read(k), read(m);
for (int i = 1; i <= n; ++i) read(p[i]);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
P4707 重返现世 扩展 MinMax 容斥+DP的更多相关文章
- Luogu P4707 重返现世 (拓展Min-Max容斥、DP)
题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了-- 首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的--Kth Min-Ma ...
- 【Luogu4707】重返现世(min-max容斥)
[Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...
- 洛谷P4707 重返现世(扩展MinMax容斥+dp)
传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...
- 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)
题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...
- P4707-重返现世【dp,数学期望,扩展min-max容斥】
正题 题目链接:https://www.luogu.com.cn/problem/P4707 题目大意 \(n\)个物品,每次生成一种物品,第\(i\)个被生成的概率是\(\frac{p_i}{m}\ ...
- 知识点简单总结——minmax容斥
知识点简单总结--minmax容斥 minmax容斥 好像也有个叫法叫最值反演? 就是这样的一个柿子: \[max(S) = \sum\limits_{ T \subseteq S } min(T) ...
- [洛谷P4707] 重返现世
Description 为了打开返回现世的大门,\(Yopilla\) 需要制作开启大门的钥匙.\(Yopilla\) 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始 ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
随机推荐
- 【CF1257C】Dominated Subarray【贪心】
题意:给定一个数组,求最小的字数组使得数组里存在至少一对重复元素 题解:每个点求出他的后继在哪,然后每次贪心就这个点到他的后继为一个子数组,求出最小的就是答案 #include<iostream ...
- jquery ajax请求回调
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- sqlserver连接-2
本地连接 方法1. 方法2. 远程连接 如果无法通过IP地址远程连接你的SQL Server 2008服务器,可以参考下面的内容进行设置. 在进行下述设置之前,应该确保你的网络已经安装设置完毕,服务器 ...
- css选择器的组合示例
案例一demo <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww ...
- 使用 Select2 下拉框实现复选
使用 Select2 下拉框实现复选 <!DOCTYPE html> <html> <head> <meta http-equiv="Content ...
- RESTful再理解
目录 目录 前言 RESTful的目的 REST的含义 表现层 状态转化 无状态协议HTTP 最后 前言 这是在经过一段时间的积累后,对RESTFul框架的再一次更深入的理解.希望能够将零散的知识点连 ...
- mysql之存储过程基础篇
1. 创建/使用数据库 mysql> create database me; mysql> use me; 2. 创建表 mysql> create table Stu(Sno ...
- 《STL源码剖析》——第一、二、三章
第一章:概论: 换句话说,STL所实现的,是依据泛型思维架设起来的一个概念结构.这个以抽象概念(abstract concepts)为主体而非以实际类(classes)为主体的结构,形成了一个严谨的 ...
- php和java的优势
现在市场上的电子商务软件基本上可归结为两大阵营,即PHP阵营和Java阵营.但对接触电子商务不久的用户来说,看到的往往只是它们的表相,只是明显的价格差异,却很难看出它们之间的实际差异.下面我们就为大家 ...
- dp(01背包问题)
且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了! 小Ho现在手上有M张奖券,而奖品区有N件奖品,分别标号为1到N,其中第i件奖品需要need( ...