1514 -- Metal Cutting

  一道类似于半平面交的题。

  题意相当简单,给出一块矩形以及最后被切出来的的多边形各个顶点的位置。每次切割必须从一端切到另一端,问切出多边形最少要切多长的距离。

  因为最短的切割距离肯定是没有多余的切割痕迹的,而且对于多边形的每一条边,都需要至少经过一次,也就是这些是必要切割。又因为最多就只有8条切割的痕迹,所以我们可以枚举每条痕迹的先后次序,然后模拟切割即刻。复杂度O(n!*n)。

代码如下:

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm> using namespace std; const double EPS = 1e-;
const double PI = acos(-1.0);
template <class T> T sqr(T x) { return x * x;}
struct Point {
double x, y;
Point() {}
Point(double x, double y) : x(x), y(y) {}
} ;
typedef Point Vec;
Vec operator + (Vec a, Vec b) { return Vec(a.x + b.x, a.y + b.y);}
Vec operator - (Vec a, Vec b) { return Vec(a.x - b.x, a.y - b.y);}
Vec operator * (Vec a, double p) { return Vec(a.x * p, a.y * p);}
Vec operator / (Vec a, double p) { return Vec(a.x / p, a.y / p);}
inline int sgn(double x) { return (x > EPS) - (x < -EPS);}
bool operator < (Point a, Point b) { return sgn(a.x - b.x) < || sgn(a.x - b.x) == && a.y < b.y;}
bool operator == (Point a, Point b) { return sgn(a.x - b.x) == && sgn(a.y - b.y) == ;} inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;}
inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;}
inline double dotDet(Point o, Point a, Point b) { return dotDet(a - o, b - o);}
inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);}
inline double vecLen(Vec x) { return sqrt(dotDet(x, x));}
inline Vec vecUnit(Vec x) { return x / vecLen(x);}
inline Vec normal(Vec x) { return Vec(-x.y, x.x) / vecLen(x);}
inline bool onSeg(Point x, Point a, Point b) { return sgn(crossDet(x, a, b)) == && sgn(dotDet(x, a, b)) < ;} int segIntersect(Point a, Point c, Point b, Point d) {
Vec v1 = b - a, v2 = c - b, v3 = d - c, v4 = a - d;
int a_bc = sgn(crossDet(v1, v2));
int b_cd = sgn(crossDet(v2, v3));
int c_da = sgn(crossDet(v3, v4));
int d_ab = sgn(crossDet(v4, v1));
// cout << a_bc << ' ' << b_cd << ' ' << c_da << ' ' << d_ab << endl;
if (a_bc * c_da > && b_cd * d_ab > ) return ;
if (onSeg(b, a, c) && c_da) return ;
if (onSeg(c, b, d) && d_ab) return ;
if (onSeg(d, c, a) && a_bc) return ;
if (onSeg(a, d, b) && b_cd) return ;
return ;
} Point lineIntersect(Point P, Vec v, Point Q, Vec w) {
Vec u = P - Q;
double t = crossDet(w, u) / crossDet(v, w);
return P + v * t;
} struct Poly {
vector<Point> pt;
Poly() { pt.clear();}
~Poly() {}
Poly(vector<Point> &pt) : pt(pt) {}
Point operator [] (int x) const { return pt[x];}
int size() { return pt.size();}
} ; Poly cutPoly(Poly &poly, Point a, Point b) {
Poly ret = Poly();
int n = poly.size();
for (int i = ; i < n; i++) {
Point c = poly[i], d = poly[(i + ) % n];
if (sgn(crossDet(a, b, c)) >= ) ret.pt.push_back(c);
if (sgn(crossDet(b - a, c - d)) != ) {
Point ip = lineIntersect(a, b - a, c, d - c);
if (onSeg(ip, c, d)) ret.pt.push_back(ip);
}
}
return ret;
} const double dir[][] = { {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}};
const double FINF = 1e100;
bool vis[];
Point rec[];
double minLen; void dfs(int p, int n, Poly &poly, double len) {
// for (int i = 0; i < n; i++) cout << vis[i]; cout << endl;
if (p >= n) {
minLen = min(len, minLen);
return ;
}
for (int i = ; i < n; i++) {
// cout << i << endl;
if (vis[i]) continue;
vis[i] = true;
Vec d = vecUnit(rec[(i + ) % n] - rec[i]) * 500.0;
// cout << rec[(i + 1) % n].x << ' ' << rec[(i + 1) % n].y << " !!! " << rec[i].x << ' ' << rec[i].y << endl;
// cout << d.x << ' ' << d.y << endl;
Point s = rec[(i + ) % n] + d, t = rec[i] - d;
vector<Point> ip;
ip.clear();
for (int j = , sz = poly.size(); j < sz; j++) {
if (segIntersect(s, t, poly[j], poly[(j + ) % sz])) {
ip.push_back(lineIntersect(s, t - s, poly[j], poly[(j + ) % sz] - poly[j]));
// cout << "has one" << endl;
}
}
sort(ip.begin(), ip.end());
int cnt = (int) (unique(ip.begin(), ip.end()) - ip.begin());
if (cnt != ) {
puts("shit!!");
while () {}
}
Poly tmp = cutPoly(poly, s, t);
dfs(p + , n, tmp, len + vecLen(ip[] - ip[]));
vis[i] = false;
}
} int main() {
// freopen("in", "r", stdin);
double x, y;
int n;
while (cin >> x >> y) {
Poly tmp = Poly();
for (int i = ; i < ; i++) tmp.pt.push_back(Point(dir[i][] * x, dir[i][] * y));
memset(vis, false, sizeof(vis));
cin >> n;
for (int i = ; i < n; i++) cin >> rec[i].x >> rec[i].y;
minLen = FINF;
dfs(, n, tmp, 0.0);
printf("Minimum total length = %.3f\n", minLen);
}
return ;
}

——written by Lyon

poj 1514 Metal Cutting (dfs+多边形切割)的更多相关文章

  1. poj 1474 Video Surveillance - 求多边形有没有核

    /* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...

  2. POJ 2378 Tree Cutting 3140 Contestants Division (简单树形dp)

    POJ 2378 Tree Cutting:题意 求删除哪些单点后产生的森林中的每一棵树的大小都小于等于原树大小的一半 #include<cstdio> #include<cstri ...

  3. 任意多边形切割/裁剪(附C#代码实现)

    本实现主要参考了发表于2003年<软件学报>的<一个有效的多边形裁剪算法>(刘勇奎,高云,黄有群)这篇论文,所使用的理论与算法大都基于本文,对论文中部分阐述进行了详细解释,并提 ...

  4. C# 实现 任意多边形切割折线算法

    1.    内容简介 本文旨在解决任意多边形切割折线,获取切割之后的折线集合. 本文实现的算法内容包括:判断两条线段是否相交,如若相交,获取交点集合.对线上的点集,按斜率方向排序.判断点是否在多边形内 ...

  5. POJ 1321 棋盘问题 --- DFS

    POJ 1321 题目大意:给定一棋盘,在其棋盘区域放置棋子,需保证每行每列都只有一颗棋子. (注意 .不可放 #可放) 解题思路:利用DFS,从第一行开始依次往下遍历,列是否已经放置棋子用一个数组标 ...

  6. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  7. [ACM_几何] Metal Cutting(POJ1514)半平面割与全排暴力切割方案

    Description In order to build a ship to travel to Eindhoven, The Netherlands, various sheet metal pa ...

  8. POJ 2378 Tree Cutting (DFS)

    题目链接:http://poj.org/problem?id=2378 一棵树,去掉一个点剩下的每棵子树节点数不超过n/2.问有哪些这样的点,并按照顺序输出. dfs回溯即可. //#pragma c ...

  9. poj 1416 Shredding Company( dfs )

    我的dfs真的好虚啊……,又是看的别人的博客做的 题目== 题目:http://poj.org/problem?id=1416 题意:给你两个数n,m;n表示最大数,m则是需要切割的数. 切割m,使得 ...

随机推荐

  1. 七牛云+MPic-图床神器搭建

    1. 注册七牛云 2. 新建存储空间 3. 密钥 4. 记录自己账户四个值: 测试域名:xxxxx.xx.clouddn.com ak:xxxxxxxxxxxxxxxxxxxx sk:xxxxxxxx ...

  2. 2019阿里云开年Hi购季云通信分会场全攻略!

    2019阿里云云上Hi购季活动已经于2月25日正式开启,从已开放的活动页面来看,活动分为三个阶段: 2月25日-3月04日的活动报名阶段.3月04日-3月16日的新购满返+5折抢购阶段.3月16日-3 ...

  3. Linux下的MySQL主从同步

    网上一些关于Linux下的MySQL主从同步教程非常之多,有些很简单的配置却弄的非常复杂,有些根本无法配通,下面是我通过简单的配置完成的主从同步过程,大家可以参考,此文章更适用于新手. 一.测试环境: ...

  4. RestFul 与 RPC

    原文地址:https://blog.csdn.net/u014590757/article/details/80233901 RPC.REST API深入理解 一:RPC RPC 即远程过程调用(Re ...

  5. ThInkPHP验证码不显示,解决方法汇总

    出现ThInkPHP验证码不显示的情况 官方提示如下:如果无法显示验证码,请检查:① PHP是否已经安装GD库支持:② 输出之前是否有任何的输出(尤其是UTF8的BOM头信息输出):(打开验证码文件为 ...

  6. (转) Hibernate持久化类与主键生成策略

    http://blog.csdn.net/yerenyuan_pku/article/details/65462930 Hibernate持久化类 什么是持久化类呢?在Hibernate中持久化类的英 ...

  7. Spring新特性_泛型依赖注入

    泛型依赖注入 package com.tanlei.spring.generic; import org.springframework.beans.factory.annotation.Autowi ...

  8. 【JZOJ4924】【NOIP2017提高组模拟12.17】向再见说再见

    题目描述 数据范围 =w= 设h[i]表示,甲队得到i分的方案数. 那么h[(n+k)/2]和h[(n−k)/2]就是答案. 设g[i]表示,甲队得到至少i分的方案数. 那么h[i]=g[i]−∑j& ...

  9. 【JZOJ4792】【NOIP2016提高A组模拟9.21】整除

    题目描述 麦克雷有一个1~n的排列,他想知道对于一些区间,有多少对区间内的数(x,y),满足x能被y整除. 输入 第一行包含2个正整数n,m.表示有n个数,m个询问. 接下来一行包含n个正整数,表示麦 ...

  10. JavaScript--轮播图_带计时器

    轮播图效果: 实现的功能: 1.鼠标移入,左右按钮显示 2.右下叫小圆点鼠标移入,进入下一张图 3.左右按钮点击,右下小圆点页跟随变更 4.自动开启计时器,鼠标移入右下叫小圆点区,计时器停止,鼠标移出 ...