传送门

解题思路

题目里有两句提示一定要看清楚,要不全买要不全卖,所以dp方程就比较好列,f[i]=max(f[j]*rate[j]*a[i])/(rate[j]*a[j]+b[j])+(f[j]*b[i])/(rate[j]*a[j]+b[j]),意义就是在从前面的某一天买入,这一天卖出,时间复杂度O(n^2),这样只有60分,,考虑优化。设在j这天a买入了x[j]股,则x[j]=(rate[j]*f[j])/(rate[j]*a[j]+b[j]),b买入了y[j]股,则y[j]=rate[j]/(rata[j]*a[j]+b[j]),那么转移方程就可以写成f[i]=x[j]*a[i]+y[j]*b[i],那么变形之后y[j]=x[j]*(a[i]/b[i])+f[i]/b[i],这不正是y=kx+b的形式,现在要求的就是用一个a[i]/b[i]斜率的直线去过x[j],y[j]这些点,使得截距最大,这正是斜率优化。但是发现这个东西只有f具有单调性,不能用单调数据结构维护,看了大佬们的博客发现可以用cdq维护。首先维护的一定是一个斜率递减的凸包,因为斜率一定为负。其次对于一条a[i]/b[i]来说,如果当前点与上一个点的斜率更小,那么向右移动可以使得截距更大,这样就可以用cdq来维护,首先按照k排序,然后cdq分治里x这一维,就可以很玄学的转移了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm> using namespace std;
const int MAXN = ;
const double inf = 1e9;
const double eps = 1e-; int n,stk[MAXN];
double f[MAXN]; struct Query{
int id;
double x,y,k,a,b,rate;
}q[MAXN],tmp[MAXN]; inline bool cmp(Query A,Query B){
return A.k<B.k;
} inline double slope(int A,int B){
if(q[A].x==q[B].x) return inf;
return (q[A].y-q[B].y)/(q[A].x-q[B].x);
} void cdq(int l,int r){
if(l==r){
f[l]=max(f[l],f[l-]);
q[l].y=f[l]/(q[l].rate*q[l].a+q[l].b);
q[l].x=q[l].y*q[l].rate;
return;
}
int mid=l+r>>;int t1=l-,t2=mid,top=;
for(register int i=l;i<=r;i++) {
if(q[i].id<=mid) tmp[++t1]=q[i];
else tmp[++t2]=q[i];
}
for(register int i=l;i<=r;i++) q[i]=tmp[i];
cdq(l,mid);
for(register int i=l;i<=mid;i++){
while(top>= && slope(stk[top-],stk[top])<=slope(stk[top],i)+eps) top--;
stk[++top]=i;
}
for(register int i=mid+;i<=r;i++){
while(top>= && slope(stk[top-],stk[top])<=q[i].k+eps) top--;
int j=stk[top];
f[q[i].id]=max(f[q[i].id],q[j].x*q[i].a+q[j].y*q[i].b);
}
cdq(mid+,r);
int L=l,R=mid+,o=;
while(L<=mid && R<=r){
if(q[L].x<q[R].x+eps) tmp[++o]=q[L++];
else tmp[++o]=q[R++];
}
while(L<=mid) tmp[++o]=q[L++];
while(R<=r) tmp[++o]=q[R++];
for(register int i=l;i<=r;i++) q[i]=tmp[i-l+];
} int main(){
scanf("%d%lf",&n,&f[]);
for(int i=;i<=n;i++) {
scanf("%lf%lf%lf",&q[i].a,&q[i].b,&q[i].rate);
q[i].k=-q[i].a/q[i].b;q[i].id=i;
}
sort(q+,q++n,cmp);cdq(,n);
printf("%.3lf",f[n]);
return ;
}

LUOGU P4027 [NOI2007]货币兑换 (斜率优化+CDQ分治)的更多相关文章

  1. bzoj1492/luogu4027 货币兑换 (斜率优化+cdq分治)

    设f[i]是第i天能获得的最大钱数,那么 f[i]=max{在第j天用f[j]的钱买,然后在第i天卖得到的钱,f[i-1]} 然后解一解方程什么的,设$x[j]=\frac{F[j]}{A[j]*Ra ...

  2. BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治

    BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM) ...

  3. [BZOJ1492][NOI2007]货币兑换Cash(斜率优化+CDQ分治)

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5838  Solved: 2345[Submit][Sta ...

  4. 【BZOJ1492】[NOI2007]货币兑换Cash 斜率优化+cdq分治

    [BZOJ10492][NOI2007]货币兑换Cash Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下简称B券).每 ...

  5. BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)

    BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...

  6. 【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 3396  Solved: 1434[Submit][Sta ...

  7. [Noi2014]购票 BZOJ3672 点分治+斜率优化+CDQ分治

    Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的 ...

  8. 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)

    LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...

  9. BZOJ3963 WF2011MachineWorks(动态规划+斜率优化+cdq分治)

    按卖出时间排序后,设f[i]为买下第i台机器后的当前最大收益,则显然有f[i]=max{f[j]+gj*(di-dj-1)+rj-pi},且若此值<0,应设为-inf以表示无法购买第i台机器. ...

随机推荐

  1. 三极管NPN和PNP开关电路

    0. 总结 NPN适合做低端驱动,即PN结在下面(低端),发射极E接地. PNP适合做高端驱动,即PN结在上面(高端),发射极E接VCC. Tips:标箭头的PN结,中间的是基极B,外头是E极. 1. ...

  2. 完美解决 IE6 position:fixed 固定定位问题

    关于 position:fixed; 属性 生成绝对定位的元素,相对于浏览器窗口进行定位. 元素的位置通过 “left”, “top”, “right” 以及 “bottom” 属性进行规定. pos ...

  3. [AH2017/HNOI2017]单旋

    题目 \(\rm splay\)水平太差,于是得手玩一下才能发现规律 首先插入一个数,其肯定会成为其前驱的右儿子或者是后继的左儿子,进一步手玩发现前驱的右儿子或者是后继的左儿子一定只有一个是空的,我们 ...

  4. I Love Palindrome String HDU - 6599 回文树+hash

    题意: 输出每个长度下的回文串(这些回文串的左半边也需要是回文串) 题解: 直接套上回文树,然后每找到一个回文串就将他hash. 因为符合要求的回文串本身是回文串,左半边也是回文串,所以它左半边也右半 ...

  5. 记录装CDH新增加一些遇到问题的解决

    报错信息:MainThread agent ERROR Heartbeating to localhost:7182 failed.解决:配置CM Agentcm的安装包的server和agent都是 ...

  6. 导出sheet到新文件夹当中

    Sub 导出当前客户达成分析()Application.ScreenUpdating = FalsemyName1 = Sheets("日期统计表").Range("B1 ...

  7. 解决Keep-Alive 和 Close 不能使用此属性设置

    http://www.hejingzong.cn/blog/viewblog_86.aspx Keep-Alive 和 Close 不能使用此属性设置 public static void SetHe ...

  8. PHP算法之转换成小写字母

    实现函数 ToLowerCase(),该函数接收一个字符串参数 str,并将该字符串中的大写字母转换成小写字母,之后返回新的字符串. 示例 1: 输入: "Hello"输出: &q ...

  9. this 、typeof、false、parseInt()、this、arguments、Array和object判断

    typeof typeof (undefined) 不会报错 undefined object Number boolean function String 返回值为字符串类型 false .fals ...

  10. 5.从物理层到MAC层

    第一层(物理层)     如何用两台电脑构成最小的局域网(LAN)?     网线的水晶头1.2和3.6脚分别起着收.发信号的作用,随意只要将水晶头做交叉线1-3.2-6交叉法,然后连接两台电脑.除了 ...