1. 防止过拟合的方法有哪些?

过拟合(overfitting)是指在模型参数拟合过程中的问题,由于训练数据包含抽样误差,训练时,复杂的模型将抽样误差也考虑在内,将抽样误差也进行了很好的拟合。

产生过拟合问题的原因大体有两个:训练样本太少或者模型太复杂。

防止过拟合问题的方法:

(1)增加训练数据。

考虑增加训练样本的数量

使用数据集估计数据分布参数,使用估计分布参数生成训练样本

使用数据增强

(2)减小模型的复杂度。

a.减少网络的层数或者神经元数量。这个很好理解,介绍网络的层数或者神经元的数量会使模型的拟合能力降低。
b.参数范数惩罚。参数范数惩罚通常采用L1和L2参数正则化(关于L1和L2的区别联系请戳这里)。
c.提前终止(Early stopping);
d.添加噪声。添加噪声可以在输入、权值,网络相应中添加。
e.结合多种模型。这种方法中使用不同的模型拟合不同的数据集,例如使用 Bagging,Boosting,Dropout、贝叶斯方法

而在深度学习中,通常解决的方法如下

Early stopping方法的具体做法是,在每一个Epoch结束时(一个Epoch集为对所有的训练数据的一轮遍历)计算validation data的accuracy,当accuracy不再提高时,就停止训练。

获取更多数据(从数据源头获取更多数据      根据当前数据集估计数据分布参数,使用该分布产生更多数据    数据增强(Data Augmentation))

正则化(直接将权值的大小加入到 Cost 里,在训练的时候限制权值变大)

dropout:在训练时,每次随机(如50%概率)忽略隐层的某些节点;

2. 使用逻辑回归(Logistic Regression)对鸢尾花数据(多分类问题)进行预测,可以直接使用sklearn中的LR方法,并尝试使用不同的参数,包括正则化的方法,正则项系数,求解优化器,以及将二分类模型转化为多分类模型的方法。
获取鸢尾花数据的方法:
from sklearn.datasets import load_iris
X, y = load_iris(return_X_y=True)

print(__doc__)

# Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model, datasets # import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data.
logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(()) plt.show()

防止过拟合的方法 预测鸾凤花(sklearn)的更多相关文章

  1. CNN 防止过拟合的方法

    CNN 防止过拟合的方法 因为数据量的限制以及训练参数的增多,几乎所有大型卷积神经网络都面临着过拟合的问题,目前常用的防止过拟合的方法有下面几种:      1. data augmentation: ...

  2. 使用基于Apache Spark的随机森林方法预测贷款风险

    使用基于Apache Spark的随机森林方法预测贷款风险   原文:Predicting Loan Credit Risk using Apache Spark Machine Learning R ...

  3. how to avoid over-fitting?(机器学习中防止过拟合的方法,重要)

    methods to avoid overfitting: Cross-Validation : Cross Validation in its simplest form is a one roun ...

  4. Andrew Ng机器学习算法入门(十):过拟合问题解决方法

    在使用机器学习对训练数据进行学习和分类的时候,会出现欠拟合和过拟合的问题.那么什么是欠拟合和过拟合问题呢?

  5. 想到的regular方法果然已经被sklearn实现了就是L1和L2组合rugular

  6. 机器学习中模型泛化能力和过拟合现象(overfitting)的矛盾、以及其主要缓解方法正则化技术原理初探

    1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去 ...

  7. 评价指标的局限性、ROC曲线、余弦距离、A/B测试、模型评估的方法、超参数调优、过拟合与欠拟合

    1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当 ...

  8. Neural Network Toolbox使用笔记1:数据拟合

    http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程 ...

  9. lecture9-提高模型泛化能力的方法

    HInton第9课,这节课没有放论文进去.....如有不对之处还望指正.话说hinton的课果然信息量够大.推荐认真看PRML<Pattern Recognition and Machine L ...

随机推荐

  1. Python--day32--复习:https和http的区别;黏包;黏包问题的解决方式;

    1,https和http的区别: https比较安全,传输的时候先对内容进行加密,收到后再进行解密:它的传输内容不容易拦截,就算拦截下来了,也是加密的,看不懂.但是要买证书,一年要好几万,小公司承担不 ...

  2. Redis - 命令行工具

    使用Redis内置的命令行工具 redis-cli一些便捷的命令: 1.执行单条命令 平时在访问 Redis 服务器,一般都会使用 redis-cli 进入交互模式,然后一问一答来读写服务器,这种情况 ...

  3. P1012 鸡兔同笼问题

    题目描述 笼子里有鸡和兔若干,一直它们共有头 \(n\) 个,有脚 \(m\) 只,问笼中的鸡和兔共有多少只? 输入格式 输入包含两个整数 \(n,m(1 \le n \le 100, 2n \le ...

  4. linux 在 scull 中使用旗标

    旗标机制给予 scull 一个工具, 可以在存取 scull_dev 数据结构时用来避免竞争情况. 但是正确使用这个工具是我们的责任. 正确使用加锁原语的关键是严密地指定要保护哪个 资源并且确认每个对 ...

  5. SDNU ACM-ICPC 2019 Competition For the End of Term(12-15)山师停训赛题解

    马鸿儒 目前已补:01 03 06 07 08 09 10 11目前未补:02 04 05 12 苏用 1582.柳予欣的舔狗行为 1587.柳予欣的女朋友们在分享水果 1585.柳予欣和她女朋友的购 ...

  6. I/O 端口和 I/O 内存

    每个外设都是通过读写它的寄存器来控制. 大部分时间一个设备有几个寄存器, 并且在连 续地址存取它们, 或者在内存地址空间或者在 I/O 地址空间. 在硬件级别上, 内存区和 I/O 区域没有概念上的区 ...

  7. java.lang.NoSuchMethodException: com.hgkj.controler.action.UserAction.newsLoginAction()

    java.lang.NoSuchMethodException: com.hgkj.controler.action.UserAction.newsLoginAction() 不久前在学习struts ...

  8. c++ CArray函数

    CArray属于MFC,是一个数组模板类.MFC的数组类支持的数组类似于常规数组,可以存放任何数据类型.常规数组在使用前必须将其定义成能够容纳所有可能需要的元素,即先确定大小,而MFC数组类创建的对象 ...

  9. IIS 6和IIS 7 中设置文件上传大小限制设置方法,两者是不一样的

    在IIS 6.0中设置文件上传大小的方法,只要设置httpRuntime就可以了 <system.web> <httpRuntime executionTimeout="3 ...

  10. ABP-多个DbContext实现事物更新

    1.在ABP中其实多个DbContext并没有在同一个事物中执行,那他是如何操作的,我的理解是 在不使用事物的时候 把多个DbContext存放在ActiveDbContexts 在调用工作单元的时候 ...