P1072 Hankson 的趣味题

题目描述

Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。

今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:

1. x 和 a0 的最大公约数是 a1;

2. x 和 b0 的最小公倍数是 b1。

Hankson 的“逆问题”就是求出满足条件的正整数 x。但稍加思索之后,他发现这样的x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。

输入输出格式

输入格式:

第一行为一个正整数 n,表示有 n 组输入数据。接下来的 n 行每行一组输入数据,为四个正整数 a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入数据保证 a0 能被 a1 整除,b1 能被 b0 整除。

输出格式:

输出文件 son.out 共 n 行。每组输入数据的输出结果占一行,为一个整数。

对于每组数据:若不存在这样的 x,请输出 0;

若存在这样的 x,请输出满足条件的 x 的个数;

输入输出样例

输入样例#1:

2
41 1 96 288
95 1 37 1776
输出样例#1:

6
2

说明

【说明】

第一组输入数据,x 可以是 9、18、36、72、144、288,共有 6 个。

第二组输入数据,x 可以是 48、1776,共有 2 个。

【数据范围】

对于 50%的数据,保证有 1≤a0,a1,b0,b1≤10000 且 n≤100。

对于 100%的数据,保证有 1≤a0,a1,b0,b1≤2,000,000,000 且 n≤2000。

NOIP 2009 提高组 第二题

【题解】

枚举b1的所有因数,判断即可

各种卡常数

 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b)) inline void read(int &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '', ch = getchar();
if(c == '-')x = -x;
} const int INF = 0x3f3f3f3f; inline int gcd(int a, int b)
{
return b == ? a : gcd(b, a % b);
} int main()
{
register int a0, a1, b0, b1, b, ans, a;
int n, k;
read(n);
for(register int i = ;i <= n;++ i)
{
ans = ;
read(a0), read(a1), read(b0), read(b1);
k = sqrt(b1);
for(a = ;a <= k;++ a)
{
b = b1 / a;
if(b1 % a != )continue;
if(a%a1 == && gcd(a/a1, a0/a1) == && gcd(b1/b0,b1/a) == ) ++ ans;
if(b%a1 == && gcd(b/a1, a0/a1) == && gcd(b1/b0,b1/b) == && a != b) ++ ans;
}
printf("%d\n", ans);
}
return ;
}

洛谷P1072

洛谷P1072 [NOIP2009] Hankson 的趣味题的更多相关文章

  1. 【洛谷P1072】Hankson 的趣味题

    题目大意:给定四个数字 a,b,c,d,求满足 \(gcd(a,x)=b,lcm(c,x)=d\) 的 x 的个数. 题解: 解法1:根据 lcm 的性质,x 一定为 d 的约数.因此,直接枚举 d ...

  2. NOIP2009 Hankson 的趣味题 : 数论

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解 ...

  3. NOIP2009 Hankson的趣味题

    题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在 ...

  4. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

  5. [NOIp2009] $Hankson$ 的趣味题

    类型:数论 传送门:>Here< 题意:给出四个数$a_0,a_1,b_0,b_1$,求满足$gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$的$x$的个数 解题思路 显然$a ...

  6. luogu1072 [NOIp2009]Hankson的趣味题 (数学+STL::set)

    一个JSB做法 由$\frac{x*b0}{gcd(x,b0)}=b1$,可得$\frac{x}{gcd(x,b0)}=\frac{b1}{b0}$ 设$b2=\frac{b1}{b0}$ 所以对$b ...

  7. NOIP 2009 Hankson 的趣味题

    洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio ...

  8. 洛谷 P1072 Hankson 的趣味题 解题报告

    P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...

  9. 洛谷P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...

随机推荐

  1. 转: Linux题目

    源地址:http://blog.csdn.net/zcsylj/article/details/6799639 一.填空题:1. 在Linux系统中,以 文件 方式访问设备 .2. Linux内核引导 ...

  2. 操作系统命令工具Util

    import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.i ...

  3. <每日一题>题目25:快速排序

    ''' 快速排序:分而治之,一分为二进行排序 ''' import cProfile import random def quick_sort(nums): if len(nums) <= 1: ...

  4. 将UBB编码转成标准的HTML代码

    /// <summary> /// 将UBB编码转成标准的HTML代码 /// </summary> /// <param name="argString&qu ...

  5. badboy的录制和jmeter的使用

    v  Jmeter是什么 Apache Jmeter是Apache组织开发的基于Java的压力测试工具. Jmeter可以用于对服务器.网络或对象模拟巨大的负载,来自不同压力类别下测试它们的强度和分析 ...

  6. Ubuntu时间管理方法

    1. date 命令主要用于显示以及修改系统时间 2. hwclock 命令用于查看设置硬件时间,以及同步硬件时间与系统时间 # 显示硬件时间hwclock # 设置硬件时间hwclock -set ...

  7. 19-10-23-L-Mor

    ZJ一下: 挺好,T2打表差点出规律(最近拿PFGYL硬卡提升自己几乎没有的打表水平) T1竟然……是个××题 T3的Floyd写死了. T1 简单思考会发现……直接全异或起来就AC 话说T1真叫最大 ...

  8. 5+App 基于HTML、JS、CSS编写的运行于手机端的App(DCloud开发)

    HTML5 Plus移动App(5+App) 工具: 开发工具HBuilder下载下载地址 开发工具HBuilderX下载下载地址(替代HBuilder) 框架: uni-app :是一个使用 Vue ...

  9. LOJ 6042 跳蚤王国的宰相

    LOJ 6042 跳蚤王国的宰相 题意 跳蚤王国爆发了一场动乱,国王在镇压动乱的同时,需要在跳蚤国地方钦定一个人来做宰相. 由于当时形势的复杂性,很多跳蚤都并不想去做一个傀儡宰相,带着宰相的帽子,最后 ...

  10. tmux使用教程

    1.安装 2.操作 如何操作快捷键呢? 比如新建一个窗口的命令是:ctrl+b+c 那么,先按住ctrl不放,接着按下b键,然后ctrl和b键都完全松开后,再立马按下c键. 3.使用命令行 tmux ...