Mondriaan's Dream 轮廓线DP 状压
Mondriaan's Dream
Problem Description
Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.
Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!
Input
The input file contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.
Output
For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.
Sample Input
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
Sample Output
1
0
1
2
3
5
144
51205
经典的一道轮廓线dp题
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 1e6 + 7;
const ll MAXM = 1e3 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
int n, m, cur;
ll dp[2][1 << 15]; //滚动数组
void update(int from, int to)
{
if (to & (1 << m)) //判断溢出的一位是不是1,是0则不合法
dp[cur][to ^ (1 << m)] += dp[cur ^ 1][from];
}
int main()
{
while (~scanf("%d%d", &n, &m) && n && m)
{
if ((n * m) & 1) //总格子是奇数自然不行
printf("0\n");
else
{
cur = 0;
if (m > n)
swap(n, m);
int top = 1 << m;
dp[cur][top - 1] = 1; //轮廓线上方
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
cur ^= 1;
memset(dp[cur], 0, sizeof(dp[cur]));
for (int k = 0; k < top; k++) /* 转移轮廓线上的状态 */
{
/* 不放 直接转移*/
update(k, k << 1);
/* 往上放 上为0,当I=0时不可往上摆*/
if (i && !(k & (1 << m - 1)))
update(k, (k << 1) ^ (1 << m) ^ 1);
/* 往左放 左为0,上为1 ,j=0时不可往左摆*/
if (j && !(k & 1))
update(k, (k << 1) ^ 3);
}
}
}
printf("%lld\n", dp[cur][(1 << m) - 1]);
}
}
return 0;
}
Mondriaan's Dream 轮廓线DP 状压的更多相关文章
- POJ2411 Mondriaan's Dream 轮廓线dp
第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...
- poj 2411 Mondriaan's Dream 轮廓线dp
题目链接: http://poj.org/problem?id=2411 题目意思: 给一个n*m的矩形区域,将1*2和2*1的小矩形填满方格,问一共有多少种填法. 解题思路: 用轮廓线可以过. 对每 ...
- 【HDU】4352 XHXJ's LIS(数位dp+状压)
题目 传送门:QWQ 分析 数位dp 状压一下现在的$ O(nlogn) $的$ LIS $的二分数组 数据小,所以更新时直接暴力不用二分了. 代码 #include <bits/stdc++. ...
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- HDU5731 Solid Dominoes Tilings 状压dp+状压容斥
题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hiho ...
- HDU 1400 (POJ 2411 ZOJ 1100)Mondriaan's Dream(DP + 状态压缩)
Mondriaan's Dream Problem Description Squares and rectangles fascinated the famous Dutch painter Pie ...
- POJ 2404 Jogging Trails [DP 状压 一般图最小权完美匹配]
传送门 题意:找一个经过所有边权值最小的回路,$n \le 15$ 所有点度数为偶则存在欧拉回路,直接输出权值和 否则考虑度数为奇的点,连着奇数条边,奇点之间走已经走过的路移动再走没走过的路 然后大体 ...
- BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】
传送门 题意:略 论文 <SPFA算法的优化及应用> http://www.cnblogs.com/lazycal/p/bzoj-2595.html 本题的核心就是求斯坦纳树: Stein ...
随机推荐
- freemarker<三>
前两篇博客介绍了freemaker是什么以及简单的语法规则,下面我们通过实现一个demo来看在实际应用中如何使用freemaker,本篇博客主要介绍freemaker与spring的整合. 需要的Ja ...
- Visio图像应用
图像插入: 直接搜索然后插入 CAD是工程绘图. CAD属性设置框 下面是图像编辑: 通过格式中的旋转进行调整 但是CAD格式的图没有格式 图片可以设置题注 图片层次的使用 CAD图片颜色的修改在 图 ...
- java中List 和 Set 的区别
a. 特性 两个接口都是继承自Collection,是常用来存放数据项的集合,主要区别如下: ① List和Set之间很重要的一个区别是是否允许重复元素的存在,在List中允许插入重复的元 ...
- sqlyong到期后怎么办
Sqlyog作为一款可视化的数据库管理工具,各种方便我就不说了,但是未经汉化或者绿色过的软件存在30天的生命期,到期后我们就不可以使用了,要摸卸载重装,我们还可以去修改注册表,来延长它的生命期,具体步 ...
- HashMap、Hashtable、LinkedHashMap、TreeMap、ConcurrentHashMap的区别
Map是Java最常用的集合类之一.它有很多实现类,我总结了几种常用的Map实现类,如下图所示.本篇文章重点总结几个Map实现类的特点和区别: 特点总结: 实现类 HashMap LinkedHash ...
- DOCKER学习_004:Docker网络
一 简介 当Docker进程启动时,会在主机上创建一个名为docker0的虚拟网桥,此主机上启动的docker容器会连接到这个虚拟网桥上.虚拟网桥的工作方式和物理交换机类似,这样主机上的所有容器就通过 ...
- MementoPattern(备忘录模式)-----Java/.Net
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象.备忘录模式属于行为型模式.
- POJ1144 Network 题解 点双连通分量(求割点数量)
题目链接:http://poj.org/problem?id=1144 题目大意:给以一个无向图,求割点数量. 这道题目的输入和我们一般见到的不太一样. 它首先输入 \(N\)(\(\lt 100\) ...
- js菜单栏切换
先来看看需要实现的需求: 这是某购物网站上经常看到的效果 我们把网页的模型抽象出来,下面是我实现的效果图: 源代码仅供大家参考,具体如下: <!DOCTYPE html> <html ...
- ruby 编写控制台进度条
ruby 中,$stdout.flush 让控制台当前行内容可以重写,以此我们可以做出进度条的效果. def set_progress(index, char = '*') print (char * ...