13 DFT变换的性质
DFT变换的性质
线性性质
\[
\begin{aligned}
y[n]&=ax[n]+bw[n]\xrightarrow{DFT}Y[k]=\sum_{n=0}^{N-1}(ax[n]+bw[n])W_N^{kn}\\
&=a\sum_{n=0}^{N-1}x[n]W_N^{kn}+b\sum_{n=0}^{N-1}w[n]W_N^{kn} \\
&=aX[k]+bW[k]
\end{aligned}
\]
时移性质
\[
\begin{aligned}
x[n-n_0]&\xrightarrow{DFT}\sum_{n=0}^{N-1}x[<n-n_0>_N]e^{-j\frac{2\pi k}{N}n} \\
&\xrightarrow{m=n-n_0}\sum_{m=-n_0}^{N-n_0-1}x[<m>_N]e^{-j\frac{2\pi k}{N}(m+n_0)} \\
&=W_{N}^{kn_0}\sum_{m=0}^{N-1}x[m]W_{N}^{km} \\
&=W_{N}^{kn_0}X[k]
\end{aligned}
\]
频移性质
\[
\begin{aligned}
W_N^{-k_0n}x[n]\xrightarrow{DFT}\sum_{n=0}^{N-1}x[n]W_N^{(k-k_0)n}=X[<k-k_0>_N]
\end{aligned}
\]
时域反转
\[
\begin{aligned}
x[<-n>_N]&\xrightarrow{DFT}\sum_{n=0}^{N-1}x[<-n>_N]W_{N}^{kn} \\
&\xrightarrow{m=-n}\sum_{m=-(N-1)}^{0}x[<m>_N]W_{N}^{-km} \\
&=\sum_{m=0}^{N-1}x[m]W_{N}^{-km} \\
&=X[<-k>_N]
\end{aligned}
\]
时域共轭
\[
\begin{aligned}
x^{*}[n]&\xrightarrow{DFT}\sum_{n=0}^{N-1}x^{*}[n]W_N^{kn} \\
&=(\sum_{n=0}^{N-1}x[n]W_N^{-kn})^{*} \\
&=X^{*}[<-k>_N]
\end{aligned}
\]
由上面两个可以推得
\[
\color{red}x^{*}[<-n>_N]\xrightarrow{DFT}X^{*}[k]
\]
对称性质
\[
x_{cs}[n]=\frac{1}{2}(x[n]+x^{*}[<-n>_N])\xrightarrow{DFT}\frac{1}{2}(X[k]+X^{*}[k])=X_{re}[k]
\]
\[
x_{ca}[n]=\frac{1}{2}(x[n]-x^{*}[<-n>_N])\xrightarrow{DFT}\frac{1}{2}(X[k]-X^{*}[k])=jX_{im}[k]
\]
\[
x_{re}[n]=\frac{1}{2}(x[n]+x^{*}[n])\xrightarrow{DFT}\frac{1}{2}(X[k]+X^{*}[<-k>_N])=X_{cs}[k]
\]
\[
jx_{im}[n]=\frac{1}{2}(x[n]-x^{*}[n])\xrightarrow{DFT}\frac{1}{2}(X[k]-X^{*}[<-k>_N])=X_{ca}[k]
\]
卷积性质
假设\(x[n],w[n]\)都是长度为\(N\)的有限长序列,它们的DFT
分别为\(X[k],W[k]\),假设它们的有值区间为\(0 \leq n \leq N-1\),那么它们进行圆周卷积的DFT
为:
\[
\begin{aligned}
x[n]\otimes w[n]&=\sum_{m=0}^{N-1}x[m]w[<n-m>_N] \\
&\xrightarrow{DFT}\sum_{n=0}^{N-1}\sum_{m=0}^{N-1}x[m]w[<n-m>_N]W_N^{kn} \\
&=\sum_{m=0}^{N-1}x[m]\sum_{n=0}^{N-1}\frac{1}{N}\sum_{r=0}^{N-1}W[r]W_N^{r(n-m)}W_N^{kn} \\
&=\sum_{m=0}^{N-1}x[m]\sum_{r=0}^{N-1}W[r]W_N^{km}(\frac{1}{N}\sum_{n=0}^{N-1}W_N^{k-r}) \\
&=\sum_{m=0}^{N-1}x[m]W_N^{km}W[k] \\
&=X[k]W[k]
\end{aligned}
\]
上式中用到了
\[
\frac{1}{N}\sum_{n=0}^{N-1}W_N^{k-r}=
\begin{cases}
1, k -r = lN , \, l=0,1,...\\
0, 其它
\end{cases}
\]
Parseval定理
\[
\begin{aligned}
\sum_{n=0}^{N-1}x[n]y^{*}[n]&=\sum_{n=0}^{N-1}x[n](\frac{1}{N}\sum_{k=0}^{N-1}Y[k]W_N^{-kn})^{*}\\
&=\frac{1}{N}\sum_{k=0}^{N-1}Y^{*}[k]\sum_{n=0}^{N-1}x[n]W_N^{kn}\\
&=\frac{1}{N}\sum_{k=0}^{N-1}X[k]Y^{*}[k]
\end{aligned}
\]
特别的,当\(x[n]=y[n]\)时
\[
\sum_{n=0}^{N-1}\vert x[n]\vert^2=\frac{1}{N}\sum_{k=0}^{N-1}\vert X[k]\vert^2
\]
13 DFT变换的性质的更多相关文章
- 《图像处理实例》 之 目标旋转矫正(基于区域提取、DFT变换)
目标:1.把矩形旋转正. 2.把文字旋转校正. ...
- 08 DTFT变换的性质
DTFT变换的性质 线性性质 设 \[ x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw}) \] 则 \[ \ ...
- z变换的性质
z变换的许多重要性质在数字信号处理中常常要用到. 序列 z变换 收敛域 1)x(n) X(z) Rx-< |z| <Rx+ 2)y(n) Y(z) Ry-< |z| <Ry+ ...
- 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...
- 【转】由DFT推导出DCT
原文地址:http://blog.sina.com.cn/s/blog_626631420100xvxd.htm 已知离散傅里叶变换(DFT)为: 由于许多要处理的信号都是实信号,在使用DFT时由于傅 ...
- z 变换
1. z 变换 单位脉冲响应为 \(h[n]\) 的离散时间线性时不变系统对复指数输入 \(z^n\) 的响应 \(y[n]\) 为 \[ \tag{1} y[n] = H(z) z^{n}\] 式中 ...
- 高速数论变换(NTT)
今天的A题.裸的ntt,但我不会,于是白送了50分. 于是跑来学一下ntt. 题面非常easy.就懒得贴了,那不是我要说的重点. 重点是NTT,也称高速数论变换. 在非常多问题中,我们可能会遇到在模意 ...
- 【转】小解DCT与DFT
这学期当本科生数字图像处理的助教老师,为使学生更好地理解DCF和DFT之间的关系给出三题,大家可以思考一下,看一下自己对这些最简单的变换是否真正理解. 1.求解序列f(n)=[2,3,3,4,4,3, ...
- 离散傅里叶变换(DFT)
目录 一.研究的意义 二.DFT的定义 三.DFT与傅里叶变换和Z变换的关系 四.DFT的周期性 五.matlab实验 五.1 程序 ...
随机推荐
- Java-POJ1007-DNA Sorting
题目大意: 你的任务是分类DNA字符串(只有ACGT四个字符,所有字符串长度相同). 根据逆序数,排序程度从好到差. 第一次用到了“类”,和c++里的结构体有类似之处 一次AC,简单暴力的冒泡排序,要 ...
- django 模型增加字段后迁移失败
任 务:已有models.py文件中定义了 ad类(用来描述广告数据库表结构).现在想增加四个新字段:ad_show_type,big_video_url,is_full_screen,vi ...
- calloc函数的使用和对内存free的认识
#include<stdlib.h> void *calloc(size_t n, size_t size): free(); 目前的理解: n是多少个这样的size,这样的使用类似有f ...
- 【转载】Win7下如何使用GCC编译器
转自:http://jingyan.baidu.com/article/c275f6bacc0126e33c756771.html 双击GCC安装包,mingw-get-setup.exe,点击Ins ...
- Bugku-CTF加密篇之python(N1CTF) [HRlgC2ReHW1/WRk2DikfNBo1dl1XZBJrRR9qECMNOjNHDktBJSxcI1hZIz07YjVx]
python(N1CTF)
- bugku 管理员系统
这一个是伪造ip X-FORWARDED-FOR:127.0.0.1 用到了XFF头 首先打开网站会发现一个登录界面 然后用开发者工具看一下 后台会发现一串用base64加密的密文 用base64解密 ...
- go基础_函数
函数的基本写法 func add(a int, b int) int { return a + b } 如果2个参数的类型一样,可以简写为 func add(a, b int) int { retur ...
- 【REST详述及RESTful规范】
目录 Web服务交互 理解REST 什么是资源? 什么是URI.URL? 统一资源接口 资源的表述 状态转移 小结 "RESTful是一种软件的架构风格.设计风格,为客户端和服务端的交互提供 ...
- Mysql数据库内置功能之函数
一 函数 MySQL中提供了许多内置函数,例如: 一.数学函数 ROUND(x,y) 返回参数x的四舍五入的有y位小数的值 RAND() 返回0到1内的随机值,可以通过提供一个参数(种子)使RAND( ...
- python 处理form/data文件上传
处理multipart/form-data 的java serverlet请求接口通过python实现 记住不要在头加:"Content-Type":"multipart ...