E. Vus the Cossack and a Field (求一有规律矩形区域值) (有一结论待证)
E. Vus the Cossack and a Field (求一有规律矩形区域值)
题意:给出一个原01矩阵,它按照以下规则拓展:向右和下拓展一个相同大小的 0 1 分别和原矩阵对应位置相反的矩阵,向右下拓展一个和原矩阵相同的矩阵,可以无限拓展,现给出Q个查询 问以 x1,y1,x2,y2为矩阵左上角和右下角的矩形中共有多少个一
reference :
https://blog.csdn.net/code92007/article/details/94149487
https://orzsiyuan.com/archives/Codeforces-1186E-Vus-the-Cossack-and-a-Field/
思路:要查找一个矩阵的值,可以用二维前缀和思想转化为求(1,1)到(x,y)中1的数量然后用二维前缀和得出答案。
设原矩阵为A 则逆矩阵为B A+B=nm 两个矩阵叠加起来刚好可以填满整个nm矩阵的1。所以我们考虑(1,1)到(x,y)有多少个完整的nm矩阵,先把nm矩阵的值求出来 这里要考虑nm有奇数个和偶数个也就是,(x,y)属于第几块nm矩阵,要进行分类讨论
1 | 1 | 2 |
---|---|---|
1 | 1 | 2 |
4 | 4 | 3 |
这里可以看为 1 代表为完整的n*m矩形 22 ,44为不完整的这里要对1,2,4的所属块数进行分类讨论,方法相同。而3则是存在奇数的情况,需要判断其正反性,可以用前面预处理的前缀和得出
如何判断正反性
可以证明 当(bitcnt(a)+bitcnt(b))为奇数的时候是反的否则是正的,这里a,b代表所属块坐标(从0开始)(不知道怎么证)
优化解法
可以把n*m矩阵拓展成(2n)(2m)矩阵,这样就可以保证1 2,4都是偶数的快,所以1的个数为面积除以2,所以只用考虑3即可。
E. Vus the Cossack and a Field (求一有规律矩形区域值) (有一结论待证)的更多相关文章
- 『Codeforces 1186E 』Vus the Cossack and a Field (性质+大力讨论)
Description 给出一个$n\times m$的$01$矩阵$A$. 记矩阵$X$每一个元素取反以后的矩阵为$X'$,(每一个cell 都01倒置) 定义对$n \times m$的矩阵$A$ ...
- Codeforces F. Vus the Cossack and Numbers(贪心)
题目描述: D. Vus the Cossack and Numbers Vus the Cossack has nn real numbers aiai. It is known that the ...
- CodeForces - 1186 C. Vus the Cossack and Strings (异或)
Vus the Cossack has two binary strings, that is, strings that consist only of "0" and &quo ...
- Vus the Cossack and Strings(Codeforces Round #571 (Div. 2))(大佬的位运算实在是太强了!)
C. Vus the Cossack and Strings Vus the Cossack has two binary strings, that is, strings that consist ...
- Codeforces Round #571 (Div. 2)-D. Vus the Cossack and Numbers
Vus the Cossack has nn real numbers aiai. It is known that the sum of all numbers is equal to 00. He ...
- C语言atan2()函数:求y/x的反正切值
头文件:#include <math.h> atan2() 函数用于求 y / x 的反正切值.其原型为: double atan2(double y, double x); [参数 ...
- python_求1-2+3-4+......-100的值
求1-2+3-4+5---100 = ? 逻辑整理: -- 本质上可以转换一下,1+3+5+--+99 -(2+4+--+100) 加减部分间隔都为2,先求1+3+5+--+99的值, 再求2+4+- ...
- HDU 6362(求椭圆中矩形周长的期望 数学)
题意是给定一个椭圆标准方程的a,b(椭圆的长半轴长和短半轴长),在[0,b]内取一个数,则过点(0,b)且平行于x轴的直线与椭圆交于两点,再将此两点关于x轴做对称点,顺次连接此四点构成矩形,求出这些矩 ...
- c# 求第30位数的值
1,1,2,3,5,8,13,21,34,55.... 求第30位数的值: 递归方法: class Program { static void Main(string[] args) { //找规律: ...
随机推荐
- Codeforces Round #613 (Div. 2) (A-E)
A略 直接求和最大的子序列即可(注意不能全部选中整个子序列) or #include<bits/stdc++.h> using namespace std; void solve(){ i ...
- 最简单的githut操作命令
创建SSH Key: 参考:https://blog.csdn.net/weixin_30345055/article/details/95139358 在用户目录下,看看有没有.ssh文件夹,如果有 ...
- java中数据类型转换注意事项
1.byte.short.char这三种类型互相做数学运算时都会先提升为int类型后再做运算 char a = 'A'; short b = 1; int num = a + b;//a和b在做运算前 ...
- win10系统家庭版升级到专业版
win10家庭版升级专业版密钥:VK7JG-NPHTM-C97JM-9MPGT-3V66T4N7JM-CV98F-WY9XX-9D8CF-369TT FMPND-XFTD4-67FJC-HDR8C-3 ...
- 疫情下的传统商企自救|4个Tips搭建销量过亿直播间
新冠肺炎爆发以来,线下商企遭受巨大冲击.出于疫情防控需要,不少门店选择暂时停业:而消费者们更是响应号召.足不出户.这场疫情促使消费者的消费习惯和方式进一步转向线上订购转变,直播.短视频等领域逆势而起, ...
- yolov3 进化之路,pytorch运行yolov3,conda安装cv2,或者conda安装找不到包问题
yolov3 进化之路,pytorch运行yolov3,conda安装cv2,或者conda安装找不到包问题 conda找不到包的解决方案. 目前是最快最好的实时检测架构 yolov3进化之路和各种性 ...
- 2018ICPC南京站Problem A. Adrien and Austin
题意: n个石头再1-n的位置上,两个人轮流取时候,必须取连续的一段,最多取k个,不能取为输,问谁会赢 解析: 当k大于等于2时,先手总能把石头分成相等的两部分,此时后手无论怎么走,先手在对称的位置选 ...
- Gin_渲染
1. 各种数据响应格式 package main import ( "github.com/gin-gonic/gin" "github.com/gin-gonic/gi ...
- Namespace declaration statement has to be the very first statement or after
解决办法:将页面文件转为utp-8无dom格式就OK了.以notepad++为例:
- Docker最全教程——从理论到实战(十三)
前言 树莓派(Raspberry Pi)是一台卡片电脑(只有信用卡大小),我们可以使用树莓派做很多事情,比如智能家居的中控.航空器.BT下载器.挖矿机.智能机器人.小型服务器(花生壳+网站)等等. 目 ...