Pandas初体验之数据结构——Series和DataFrame
Pandas
是为了解决数据分析任务而创建的,纳入了大量的库和标准数据模型,提供了高效地操作大型数据集所需的工具。
对于Pandas
包,在Python
中常见的导入方法如下:
from pandas import Series,DataFrame
import pandas as pd
首先,我们需要对于Series和DataFrame有个基本的了解:
Series:一维数组,类似于Python
中的基本数据结构list
,区别是Series
只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。就像数据库中的列数据。
DataFrame
: 二维的表格型数据结构。很多功能与R语言
中的data.frame
类似。可以将DataFrame
理解为Series
的容器。
接下来我们通过实例分别了解Series和DataFrame。
1、Series
Pandas的Series对象是一个带索引数据构成的一维数组。可以用一个数组创建Series对象,如下所示:
In [1] : data = pd.Series([1,2,3,4])
In [2] : data
Out[2] :0 1
1 2
2 3
3 4
Series对象将一组数据和一组索引绑定在一起,我们可以通过values属性和index属性获取数据。values属性返回的结果与Numpy数组类似。index属性返回的是一个类型为pd.index的类数组对象。和Numpy数组一样,数据可以通过Python的中括号索引标签来获取:
In [3]: data.values
Out[3]:array([1,2,3,4])
In [4]: data.index
Out[4]:Int64Index([0,1,2,3])
In [5]:data2=Series([4,7,-5,3],index=['d','b','a','c'])
In [6]:data2
Out[6]:
d 1
b 2
a 3
c 4
如果你有一些数据在一个Python
字典中,你可以通过传递字典来从这些数据创建一个Series
,只传递一个字典的时候,结果Series
中的索引将是排序后的字典的键。
In [7]:sdata={'Ohio':35000,'Texas':71000,'Oregon':16000,'Utah':5000}
In [8]:obj3=Series(sdata)
In [9]:obj3
Out[9]:
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
实例:
创建一个名为
series_a
的series
数组,当中值为[1,2,5,7]
,对应的索引为['nu', 'li', 'xue', 'xi']
;创建一个名为
dict_a
的字典,字典中包含如下内容{'ting':1, 'shuo':2, 'du':32, 'xie':44}
;将
dict_a
字典转化成名为series_b
的series
数组。
from pandas import Series,DataFrame
import pandas as pd def create_series():
'''
返回值:
series_a: 一个Series类型数据
series_b: 一个Series类型数据
dict_a: 一个字典类型数据
'''
a=[1,2,5,7]
index=['nu','li','xue','xi']
series_a=Series(a,index)
dict_a={'ting':1,'shuo':2,'du':32,'xie':44}
series_b=Series(dict_a) return series_a,dict_a,series_b
2、DataFrame
DataFrame
是一个表格型的数据结构,是以一个或多个二维块存放的数据表格(层次化索引),DataFrame
既有行索引还有列索引,它有一组有序的列,每列既可以是不同类型(数值、字符串、布尔型)的数据,或者可以看做由Series
组成的字典。
创建:
dictionary = {'state':['0hio','0hio','0hio','Nevada','Nevada'],
'year':[2000,2001,2002,2001,2002],
'pop':[1.5,1.7,3.6,2.4,2.9]}
frame = DataFrame(dictionary)
修改行名:
frame=DataFrame(dictionary,index=['one','two','three','four','five'])
添加修改:
frame['add']=[0,0,0,0,0]
添加Series类型:
value = Series([1,3,1,4,6,8],index = [0,1,2,3,4,5])
frame['add1'] = value
实例:
创建一个五行三列的名为
df1
的DataFrame
数组,列名为[states,years,pops]
,行名['one','two','three','four','five']
;给
df1
添加新列,列名为new_add
,值为[7,4,5,8,2]
。
from pandas import Series,DataFrame
import pandas as pd def create_dataframe():
'''
返回值:
df1: 一个DataFrame类型数据
'''
df1=DataFrame(index=['one','two','three','four','five'],columns=['states','years','pops'])
df1['new_add']=[7,4,5,8,2] return df1
对于刚接触Pandas的同学来说,Series和DataFrame其实也不是很难,但是它们确是基础中的基础,是我们以后学习中常用的东西,所以我们必须把它们掌握好,才能更好的学习这门课。
Pandas初体验之数据结构——Series和DataFrame的更多相关文章
- 02. Pandas 1|数据结构Series、Dataframe
1."一维数组"Series Pandas数据结构Series:基本概念及创建 s.index . s.values # Series 数据结构 # Series 是带有标签的一 ...
- pandas 的数据结构Series与DataFrame
pandas中有两个主要的数据结构:Series和DataFrame. [Series] Series是一个一维的类似的数组对象,它包含一个数组数据(任何numpy数据类型)和一个与数组关联的索引. ...
- 小白学 Python 数据分析(3):Pandas (二)数据结构 Series
在家为国家做贡献太无聊,不如跟我一起学点 Python 顺便问一下,你们都喜欢什么什么样的文章封面图,老用这一张感觉有点丑 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析( ...
- Pandas初体验
目录 Pandas 一.简介 1.安装 2.引用方法 二.series 1.创建方法 2.缺失数据处理 2.1 什么是缺失值 2.2 NaN特性 2.3 填充NaN 2.4 删除NaN 2.5 其他方 ...
- pandas(一)操作Series和DataFrame的基本功能
reindex:重新索引 pandas对象有一个重要的方法reindex,作用:创建一个适应新索引的新对象 以Series为例 >>> series_obj = Series([4. ...
- 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Panda ...
- pandas 的数据结构(Series, DataFrame)
Pandas 讲解 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标 ...
- Python数据分析之pandas基本数据结构:Series、DataFrame
1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
随机推荐
- 纪中10日T1 2300. 【noip普及组第一题】模板题
2300. [noip普及组第一题]模板题 (File IO): input:template.in output:template.out 时间限制: 1000 ms 空间限制: 262144 K ...
- [Python机器学习]鸢尾花分类 机器学习应用
1.问题简述 假设有一名植物学爱好者对她发现的鸢尾花的品种很感兴趣.她收集了每朵鸢尾花的一些测量数据: 花瓣的长度和宽度以及花萼的长度和宽度,所有测量结果的单位都是厘米. 她还有一些鸢尾花的测量数据, ...
- java网页程序采用 spring 防止 csrf 攻击 转
银行项目开发过程中,基本都会采用 spring 框架,所以完全可以不用自己开发 filter 去拦截 csrf 攻击的请求,而直接采用实现 spring 提供的 HandlerInterceptor ...
- 聊聊智能指针 auto_ptr、shared_ptr、weak_ptr和unique_ptr
本文为转载:https://www.cnblogs.com/zeppelin5/p/10083597.html,对作者有些地方做了修正. 手写代码是理解C++的最好办法,以几个例子说明C++四个智能指 ...
- FirstJavaWeb
(未完成)出错有点多,Tomcat的配置也出问题了,Tomcat突然找不到jdk了,好像是我之前下载过一回然后没卸干净有残留文件,还有连接数据库的代码也有问题. <%@page im ...
- 安全 - CORS(脚本请求等)
功能概述 出于安全原因,浏览器限制从脚本内发起的跨域HTTP请求 或 拦截了跨域请求的结果. 例如,XMLHttpRequest和Fetch API遵循同源策略. 这意味着使用这些API的Web应用程 ...
- git在idea中使用
(1)创建README.md文件 fengli@DESKTOP-FEQ1N4I MINGW32 /f/workspace/imallproject (master)$ touch README.md ...
- 从零开始学 Java - 搭建 Spring MVC 记录云创的日子 第一章
2017年11月29日 来到新项目,需要用到Spring MVC ,那么我就开始记录我这次的学习. Spring MVC 框架是围绕一个 DispatcherServlet 来设计的,这个 Servl ...
- Give me five !
@media only screen and (max-width: 360px) { #friedsGroup { grid-template-columns:1fr!important; } } ...
- windows上快速新建1g的文件
在E盘新建1g文件 fsutil file createnew d:\b.txt 1073741824